Những câu hỏi liên quan
H24
Xem chi tiết
N3
18 tháng 2 2019 lúc 19:12

VL CTV MÀ CŨNG HỎI

Bình luận (0)

CTV cũng được phép hỏi chứ bạn.

Bình luận (0)
H24
18 tháng 2 2019 lúc 19:20

Kiếm Sĩ Yaiba: dell bt làm thì câm cái mồm m lại.t éo chấp thể loại như m nhá!Đừng có vác cái bản mặt vào đây cho người ta sỉ vả lên mặt bạn ấy=)

Bình luận (0)
LF
Xem chi tiết
PK
16 tháng 8 2016 lúc 23:27

Ta có :

sử dụng bunhiacôpski

\(\left(a+b+c\right)^2\le\left(a^2+2\right)\left(1+\frac{\left(b+c\right)^2}{2}\right)\)

Ta cần chứng minh

\(\left(b^2+2\right)\left(c^2+2\right)\ge3\left(1+\frac{\left(b+c\right)^2}{2}\right)\)

nhân ra rồi rút gọn sẽ có kết quả là : 

\(\frac{b^2+c^2}{2}+b^2c^2-3bc+1\ge0\)

\(\Leftrightarrow\frac{b^2+c^2}{2}+\left(bc-1\right)^2-bc\ge0\)

\(\Leftrightarrow\frac{b^2+c^2}{2}\ge bc\)

 

Bình luận (0)
KH
23 tháng 8 2016 lúc 17:47

Ta cần chứng minh : a1+a2+...+anna1.a2...an−−−−−−−−−√na1+a2+...+ann≥a1.a2...ann với nN*n∈N*

Hiển nhiên bđt đúng với n = 2 , tức là a1+a22a1a2−−−−√a1+a22≥a1a2 (1)

Giả sử bđt đúng với n = k , tức là a1+a2+...+akka1.a2...ak−−−−−−−−−√ka1+a2+...+akk≥a1.a2...akk với k>2k>2

Ta sẽ chứng minh bđt cũng đúng với mọi n = k + 1 

Không mất tính tổng quát, đặt a1a2...akak+1a1≤a2≤...≤ak≤ak+1

thì : ak+1a1+a2+...+akkak+1≥a1+a2+...+akk . Lại đặt a1+a2+...+akk=x,x0a1+a2+...+akk=x,x≥0

ak+1=x+y,y0⇒ak+1=x+y,y≥0 và xk=a1.a2...akxk=a1.a2...ak (suy ra từ giả thiết quy nạp)

Ta có : (a1+a2+...+ak+1k+1)k+1=(kx+x+yk+1)k+1=(x(k+1)+yk+1)k+1=(x+yk+1)k+1(a1+a2+...+ak+1k+1)k+1=(kx+x+yk+1)k+1=(x(k+1)+yk+1)k+1=(x+yk+1)k+1

                                            xk+1+(k+1).yk+1.xk=xk+1+y.xk=xk(x+y)a1.a2...ak.ak+1≥xk+1+(k+1).yk+1.xk=xk+1+y.xk=xk(x+y)≥a1.a2...ak.ak+1

Suy ra (a1+a2+...+ak+1k+1)k+1a1.a2...ak+1−−−−−−−−−−√k+1(a1+a2+...+ak+1k+1)k+1≥a1.a2...ak+1k+1

Vậy bđt luôn đúng với mọi n > 2 (2)

Từ (1) và (2) suy ra đpcm.

Bình luận (0)
LH
Xem chi tiết
H24
18 tháng 2 2019 lúc 13:08

Vì a;b;c dương nên tồn tại \(\sqrt{a};\sqrt{b};\sqrt{c}\)

Đặt:\(\sqrt{a};\sqrt{b};\sqrt{c}\rightarrow x;y;z\)

Ta viết lại bđt cần chứng minh: \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^2yz+y^2xz+z^2xy\right)\)

Ta có: \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^2y^2+y^2z^2+x^2z^2\right)\)

Áp dụng bđt Cauchy: \(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)

\(y^2z^2+z^2x^2\ge2\sqrt{x^2y^2z^4}=2xyz^2\)

\(x^2z^2+x^2y^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)

Cộng theo vế và rg:

\(x^2y^2+y^2z^2+x^2z^2\ge xyz^2+x^2yz+xy^2z\)

-> đpcm. Bằng khi x=y=z hay a=b=c

Bình luận (0)
NP
Xem chi tiết
H24
6 tháng 3 2019 lúc 6:39

Uầy,giống câu hỏi của em hôm hổm=)

Bình luận (0)
ST
Xem chi tiết
DN
Xem chi tiết
NL
14 tháng 4 2022 lúc 16:32

Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)

\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)

\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)

Nhân phá và rút gọn 2 vế:

\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)

Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
VQ
Xem chi tiết
H24
23 tháng 12 2018 lúc 21:03

\(VT=\dfrac{1}{\dfrac{a}{b}+\dfrac{c}{a}+1}+\dfrac{1}{\dfrac{b}{c}+\dfrac{a}{b}+1}+\dfrac{1}{\dfrac{c}{a}+\dfrac{b}{c}+1}\)

\(\left(\dfrac{a}{b},\dfrac{b}{c},\dfrac{c}{a}\right)\rightarrow\left(x^3,y^3,z^3\right)\)\(\Rightarrow xyz=1\).

\(VT=\sum\dfrac{1}{x^3+y^3+1}\le\sum\dfrac{1}{xy\left(x+y\right)+xyz}=\sum\dfrac{z}{x+y+z}=1\)

Dấu = xảy ra khi x=y=z=1 hay a=b=c

Bình luận (1)
NA
Xem chi tiết
QT
19 tháng 5 2018 lúc 23:01

\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)

Bình luận (0)
HN
25 tháng 5 2018 lúc 20:54

Đúng rầu đấy

Bình luận (0)
NH
Xem chi tiết