§1. Bất đẳng thức

VQ

cho số dương a,b,c. Tìm GTLN : \(\dfrac{ab}{a^2+ab+bc}+\dfrac{bc}{b^2+bc+ca}+\dfrac{ca}{c^2+ca+ab}\)

H24
23 tháng 12 2018 lúc 21:03

\(VT=\dfrac{1}{\dfrac{a}{b}+\dfrac{c}{a}+1}+\dfrac{1}{\dfrac{b}{c}+\dfrac{a}{b}+1}+\dfrac{1}{\dfrac{c}{a}+\dfrac{b}{c}+1}\)

\(\left(\dfrac{a}{b},\dfrac{b}{c},\dfrac{c}{a}\right)\rightarrow\left(x^3,y^3,z^3\right)\)\(\Rightarrow xyz=1\).

\(VT=\sum\dfrac{1}{x^3+y^3+1}\le\sum\dfrac{1}{xy\left(x+y\right)+xyz}=\sum\dfrac{z}{x+y+z}=1\)

Dấu = xảy ra khi x=y=z=1 hay a=b=c

Bình luận (1)

Các câu hỏi tương tự
VQ
Xem chi tiết
NV
Xem chi tiết
PT
Xem chi tiết
LL
Xem chi tiết
DH
Xem chi tiết
HH
Xem chi tiết
DY
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết