Những câu hỏi liên quan
H24
Xem chi tiết
H24
1 tháng 10 2023 lúc 8:57

a) Độ dài trung đoạn của hình chóp S.ABC là độ dài đoạn thẳng từ trung điểm của cạnh đáy đến đỉnh của hình chóp. Vì tam giác ABC là tam giác đều, nên ta có thể tính độ dài trung đoạn bằng cách sử dụng công thức Pythagoras: Trung đoạn = căn bậc hai của (AC^2 - (AC/2)^2) = căn bậc hai của (8^2 - (8/2)^2) = căn bậc hai của (64 - 16) = căn bậc hai của 48 = 4 căn 3 cm

b) Diện tích xung quanh của hình chóp S.ABC là tổng diện tích các mặt bên của hình chóp. Vì tam giác ABC là tam giác đều, nên diện tích mặt bên của hình chóp là diện tích tam giác đều. Ta có công thức tính diện tích tam giác đều: Diện tích tam giác đều = (cạnh^2 * căn 3) / 4 = (8^2 * căn 3) / 4 = 16 căn 3 cm^2

Diện tích xung quanh = Diện tích tam giác đều + Diện tích đáy = 16 căn 3 + 27,72 = 16 căn 3 + 27,72 cm^2

Diện tích toàn phần của hình chóp là tổng diện tích xung quanh và diện tích đáy: Diện tích toàn phần = Diện tích xung quanh + Diện tích đáy = 16 căn 3 + 27,72 + 27,72 = 16 căn 3 + 55,44 cm^2

c) Thể tích của hình chóp tam giác đều S.ABC được tính bằng công thức: Thể tích = (Diện tích đáy * Chiều cao) / 3 = (27,72 * 7,5) / 3 = 69,3 cm^3

Bình luận (1)
PB
Xem chi tiết
CT
28 tháng 9 2017 lúc 2:44

a) Chân đường cao H của hình chóp S.ABC trùng với trọng tâm của tam giác ABC.

Gọi M là trung điểm của BC

Tam giác ABC có

b) Tam giác SAM cân ở M nên

 

Diện tích xung quanh của hình chóp:

 

c) Diện tích toàn phần của hình chóp: 

d) Thể tích của hình chóp

 

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 6 2019 lúc 15:44

a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)

Lại có: SH2 = SC2 - HC2 (Pytago)

b) Gọi K là trung điểm của BC

Ta có: SK2 = SH2 + HK2 (Pytago)

Bình luận (0)
H24
Xem chi tiết
HM
8 tháng 9 2023 lúc 21:16

a) Diện tích xung quanh của hình chóp tam giác đều là: \(\frac{{10.3}}{2}.12 = 180\) (\(c{m^2}\))

b) Diện tích xung quanh của hình chóp tứ giác đều là: \(\frac{{72.4}}{2}.77 = 11088\) (\(d{m^2}\))

Diện tích đáy của hình chóp tứ giác đều là: \({72^2}=5184\) (\(d{m^2}\))

Diện tích toàn phần của hình chóp tứ giác đều là: \(11088 + 5184 = 16 272\) (\(d{m^2}\))

Thể tích của hình chóp tứ giác đều là: \(\frac{1}{3}.5184.68,1=117676,8\) (\(d{m^3}\))

Bình luận (0)
NT
Xem chi tiết
NT
31 tháng 7 2023 lúc 15:55

Sxq=16*4*17/2=544cm2

Stp=544+16^2=800cm2

V=1/3*16^2*15=1280cm3

Bình luận (0)
H9
31 tháng 7 2023 lúc 16:01

Nữa chu vi đáy của hình chóp đều:

\(16\cdot4:2=32\left(cm\right)\)

Diện tích xung quanh của hình chóp đều:

\(S_{xq}=32\cdot17=544\left(cm^2\right)\)

Diện tích mặt đáy của hình chóp đều:

\(S_đ=16^2=256\left(cm^2\right)\)

Diện tích toàn phần của hình chóp đều:

\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)

Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)

Bình luận (0)
DN
Xem chi tiết
NT
31 tháng 3 2023 lúc 23:04

a: V=1/3*S*h

=>S=3/h*V=3/3*16=16cm2

=>độ dài cạnh đáy là 4(cm)

b: Gọi I là trung điểm của DC

=>SI là trung đoạn của hình chóp

ΔSHI vuông tạiH

=>\(SI=\sqrt{SH^2+HI^2}=\sqrt{13}\left(cm\right)\)

=>\(S_{Xq}=2\cdot4\cdot\sqrt{13}=8\sqrt{13}\left(cm^2\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 5 2018 lúc 8:40

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 9 2019 lúc 15:55

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

 

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 11 2017 lúc 10:52

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Bình luận (0)