Tính diện tích xung quanh, toàn phần, thể tích của hình chóp tứ giác có h= SH=a√2,a=AB=BC=a
Cho hình chóp tam giác đều S.ABC có AC = SC = 8 cm , SH = 6,93 cm ,S tam giác ABC = 27,72 cm2
a) Cho biết độ dài trung đoạn của hình chóp S.ABC.
b) Tính diện tích xung quanh và diện tích toàn phần của hình chóp S.ABC.
c) Tính thể tích của hình chóp tam giác đều S.ABC biết chiều cao của hình chóp là 7,5 cm
a) Độ dài trung đoạn của hình chóp S.ABC là độ dài đoạn thẳng từ trung điểm của cạnh đáy đến đỉnh của hình chóp. Vì tam giác ABC là tam giác đều, nên ta có thể tính độ dài trung đoạn bằng cách sử dụng công thức Pythagoras: Trung đoạn = căn bậc hai của (AC^2 - (AC/2)^2) = căn bậc hai của (8^2 - (8/2)^2) = căn bậc hai của (64 - 16) = căn bậc hai của 48 = 4 căn 3 cm
b) Diện tích xung quanh của hình chóp S.ABC là tổng diện tích các mặt bên của hình chóp. Vì tam giác ABC là tam giác đều, nên diện tích mặt bên của hình chóp là diện tích tam giác đều. Ta có công thức tính diện tích tam giác đều: Diện tích tam giác đều = (cạnh^2 * căn 3) / 4 = (8^2 * căn 3) / 4 = 16 căn 3 cm^2
Diện tích xung quanh = Diện tích tam giác đều + Diện tích đáy = 16 căn 3 + 27,72 = 16 căn 3 + 27,72 cm^2
Diện tích toàn phần của hình chóp là tổng diện tích xung quanh và diện tích đáy: Diện tích toàn phần = Diện tích xung quanh + Diện tích đáy = 16 căn 3 + 27,72 + 27,72 = 16 căn 3 + 55,44 cm^2
c) Thể tích của hình chóp tam giác đều S.ABC được tính bằng công thức: Thể tích = (Diện tích đáy * Chiều cao) / 3 = (27,72 * 7,5) / 3 = 69,3 cm^3
Cho hình chóp đều S.ABC, có tất cả các cạnh bằng nhau và đều bằng 4 cm.
a) Xác định vị trí chân đường cao H của hình chóp S.ABC và tính độ dài đoạn SH.
b) Tính diện tích xung quanh hình chóp.
c) Tính diện tích toàn phần của hình chóp.
d) Tính thể tích hình chóp.
a) Chân đường cao H của hình chóp S.ABC trùng với trọng tâm của tam giác ABC.
Gọi M là trung điểm của BC
Tam giác ABC có
b) Tam giác SAM cân ở M nên
Diện tích xung quanh của hình chóp:
c) Diện tích toàn phần của hình chóp:
d) Thể tích của hình chóp
Cho hình chóp tứ giác đều S.ABCD, đáy ABCD là hình vuông có cạnh 3cm, cạnh bên SA = 5cm.
a) Tính đường cao SH của hình chóp.
b) Tính diện tích xung quanh và thể tích của hình chóp.
a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)
Lại có: SH2 = SC2 - HC2 (Pytago)
b) Gọi K là trung điểm của BC
Ta có: SK2 = SH2 + HK2 (Pytago)
a) Tính diện tích xung quanh của hình chóp tam giác đều có độ dài cạnh đáy là 1010cm, chiều cao của mặt bên xuất phát từ đỉnh của hình chóp tam giác đều là 1212cm.
b) Tính diện tích toàn phần và thể tích của hình chóp tứ giác đều có độ dài cạnh đáy là 7272dm, chiều cao là 68,168,1dm, chiều cao của mặt bên xuất phát từ đỉnh của hình chóp tứ giác đều là 7777dm.
a) Diện tích xung quanh của hình chóp tam giác đều là: \(\frac{{10.3}}{2}.12 = 180\) (\(c{m^2}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là: \(\frac{{72.4}}{2}.77 = 11088\) (\(d{m^2}\))
Diện tích đáy của hình chóp tứ giác đều là: \({72^2}=5184\) (\(d{m^2}\))
Diện tích toàn phần của hình chóp tứ giác đều là: \(11088 + 5184 = 16 272\) (\(d{m^2}\))
Thể tích của hình chóp tứ giác đều là: \(\frac{1}{3}.5184.68,1=117676,8\) (\(d{m^3}\))
một hình chóp tứ giác đều có chiều cao bằng 15cm, trung đoạn bằng 17cm, độ dài cạnh đáy của hình chóp bằng 16cm. Tính diện tích xung quanh, diện tích toàn phần ( tổng diện tích các mặt đáy của hình chóp ), thể tích của hình chóp tứ giác đều?
Sxq=16*4*17/2=544cm2
Stp=544+16^2=800cm2
V=1/3*16^2*15=1280cm3
Nữa chu vi đáy của hình chóp đều:
\(16\cdot4:2=32\left(cm\right)\)
Diện tích xung quanh của hình chóp đều:
\(S_{xq}=32\cdot17=544\left(cm^2\right)\)
Diện tích mặt đáy của hình chóp đều:
\(S_đ=16^2=256\left(cm^2\right)\)
Diện tích toàn phần của hình chóp đều:
\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)
Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)
Cho hình chóp tứ giác đều S.ABCD có chiều cao SH là 3cm và thể tích là 16cm3.
a) Tính độ dài cạnh đáy
b) Tính diện tích xung quanh
a: V=1/3*S*h
=>S=3/h*V=3/3*16=16cm2
=>độ dài cạnh đáy là 4(cm)
b: Gọi I là trung điểm của DC
=>SI là trung đoạn của hình chóp
ΔSHI vuông tạiH
=>\(SI=\sqrt{SH^2+HI^2}=\sqrt{13}\left(cm\right)\)
=>\(S_{Xq}=2\cdot4\cdot\sqrt{13}=8\sqrt{13}\left(cm^2\right)\)
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông, cạnh đáy là 8cm, chiều cao 10cm.
+ Tính diện tích xung quanh và diện tích toàn phần của hình chóp.
+ Tính thể tích của hình chóp.
Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông, cạnh đáy là 8cm, chiều cao 10cm.
+ Tính diện tích xung quanh và diện tích toàn phần của hình chóp.
+ Tính thể tích của hình chóp.
Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông, cạnh đáy là 8cm, chiều cao 10cm.
+ Tính diện tích xung quanh và diện tích toàn phần của hình chóp.
+ Tính thể tích của hình chóp.
Ta có ABCD là hình vuông, khi đó nửa chu vi bằng: