Chứng minh rằng B chia hết cho 85 : B = 41+42+43+...+423+424
Cho A = 42+43+44+...+423+424. Chứng minh A chia hết 20;21;420
Cho A = 4 + 42 + 43 +¼+ 423 + 424 . Chứng minh: A chia hết 20; A chia hết 21; A chia hết 420 .
Cho A = 42+43+44+...+423+424. Chứng minh A ⋮20;21;420
\(A=4\left(1+4+4^2\right)+...+4^{22}\left(1+4+4^2\right)\)
\(=20\left(1+...+4^{22}\right)⋮20\)
Chứng minh 21 chia hết cho A
A= 4+4^2+4^3+...+4^60
cho A = 4+42+43+...+423+424. Chứng minh : A⋮20,A⋮21,A⋮420.
A=(4+4^2)+...+4^22(4+4^2)
=20(1+...+4^22) chia hết cho 20
A=4(1+4+4^2)+...+4^22(1+4+4^2)
=21(4+...+4^22) chia hết cho 21
Vì A chia hết cho 20 và 21
và ƯCLN(20;21)=1
nên A chia hết cho 20*21=420
cho A = 4 + 42 + 43 + .... + 423 + 424 . chứng minh A ⋮ 20 , A⋮21 , A⋮420
Lời giải:
$A=(4+4^2)+(4^3+4^4)+...+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+...+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+....+4^{22})=20(1+4^2+...+4^{22})\vdots 20$
----------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+....+4^{22})=21(4+4^4+...+4^{22})\vdots 21$
--------------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
A = 4+ 42 + 43+....+ 423+424 . chứng minh A ⋮20 ; A ⋮21 ; A ⋮420
a) cho A =999993^1999 - 555557^4997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏrằng : 1/41+1/42+1/43+...+1/79+1/80>7/12
A= 4+42+43+....+423+424. Hãy chứng minh: A⋮ 20; A⋮ 21; A⋮ 420
Các bạn làm nhanh giúp mình nhé! Mình cần ôn thi bằng bài này á!
Ta có:
A = 4 + 42 + 43 +......+ 423+ 424
= (4 + 42)) + (43 +44)......+ (423+ 424)
=(4 + 42).1+(4 + 42).42+...+(4 + 42).422
=20.(1+42+...+422) chia hết cho 20
Ta lại có:
A = 4 + 42 + 43 +......+ 423+ 424
=(4 + 42 + 43)+...+(422+423+424)
=(4 + 42 + 43).1+...+(4 + 42 + 43).421
=21.(1+...+421) chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A ⋮ 20 và 21 tức là A ⋮ 20.21=420
Vậy...
bài 1
tìm các số nguyên x,y biết : xy + 3x + 3y = -16
bài 2
cho S = 3+32+33+...+32021. Chứng tỏ rằng 2S+3 viết được dưới dạng bình phương của một số tự nhiên
bài 3
cho A = 4+42+43+...+423+424. Chứng minh : A⋮20,A⋮21,A⋮420.
Bài 2:
3S=3^2+3^3+...+3^2022
=>2S=3^2022-3
=>2S+3=3^2022 là số chính phương(ĐPCM)
TK :
bài 1
út gọn thừa số chung
Đơn giản biểu thức
Giải phương trình
Rút gọn thừa số chung
Đơn giản biểu thức
Rút gọn thừa số chung
Đơn giản biểu thức
mik chỉ bt làm câu 1 thôiBài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào