Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
BP
Xem chi tiết
NP
Xem chi tiết
H24
14 tháng 3 2019 lúc 17:33

\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)

\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)

\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)

\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)

\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)

Bình luận (0)
ND
Xem chi tiết
HC
Xem chi tiết
DL
29 tháng 6 2016 lúc 23:40

Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
TN
Xem chi tiết
NT
11 tháng 7 2023 lúc 23:14

a: (2x-3)^2>=0

=>-(2x-3)^2<=0

=>D<=-3

Dấu = xảy ra khi x=3/2

b: (2x-5)^2>=0

(y+1/2)^2>=0

=>(2x-5)^2+(y+1/2)^2>=0

=>D>=2022

Dấu = xảy ra khi x=5/2 và y=-1/2

Bình luận (0)
MR
Xem chi tiết
H24
5 tháng 8 2016 lúc 1:15

\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\le1+\frac{2x}{2x\sqrt{3}}=\frac{\sqrt{3}+1}{\sqrt{3}}\)

Dấu bằng xảy ra khi và chỉ khi \(x^2+3=2x\sqrt{3}\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\Leftrightarrow x=\sqrt{3}\)

\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\ge1+\frac{-\frac{x^2+3}{\sqrt{3}}}{x^2+3}=1-\frac{1}{\sqrt{3}}=\frac{\sqrt{3}-1}{\sqrt{3}}\)

Dấu bằng xảy ra khi và chỉ khi \(2x=-\frac{x^2+3}{\sqrt{3}}\Leftrightarrow2x\sqrt{3}=-\left(x^2+3\right)\Leftrightarrow\left(x+\sqrt{3}\right)^2=0\Leftrightarrow x=-\sqrt{3}\)

Bình luận (0)
MR
6 tháng 8 2016 lúc 20:44

Có bạn nào có cách giải dễ hiểu hơn không? Giúp mình với!!!

Bình luận (0)
AD
24 tháng 11 2017 lúc 21:13

bđt cô-si đó bạn :)) 

Bình luận (0)
NV
Xem chi tiết
DH
17 tháng 1 2018 lúc 15:11

Ta có: \(M=\frac{x^2+2x+3}{x^2+2}=\frac{2.\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}\)

                                                  \(=\frac{2.\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy Mmax = 2 khi x = 1

Bình luận (0)
LT
Xem chi tiết
AH
3 tháng 10 2019 lúc 14:53

Lời giải:

\(B=\frac{x^2+2x+3}{x^2+2}\Rightarrow B(x^2+2)=x^2+2x+3\)

\(\Leftrightarrow x^2(B-1)-2x+(2B-3)=0(*)\)

Vì biểu thức $B$ xác định nên $(*)$ luôn có nghiệm

$\Rightarrow \Delta'=1-(B-1)(2B-3)\geq 0$

$\Leftrightarrow -2B^2+5B-2\geq 0$

$\Leftrightarrow (1-2B)(B-2)\geq 0$

$\Leftrightarrow \frac{1}{2}\leq B\leq 2$

Vậy $B_{\min}=\frac{1}{2}; B_{\max}=2$

Bình luận (0)
AH
6 tháng 10 2019 lúc 18:07

Lời giải:

\(B=\frac{x^2+2x+3}{x^2+2}\Rightarrow B(x^2+2)=x^2+2x+3\)

\(\Leftrightarrow x^2(B-1)-2x+(2B-3)=0(*)\)

Vì biểu thức $B$ xác định nên $(*)$ luôn có nghiệm

$\Rightarrow \Delta'=1-(B-1)(2B-3)\geq 0$

$\Leftrightarrow -2B^2+5B-2\geq 0$

$\Leftrightarrow (1-2B)(B-2)\geq 0$

$\Leftrightarrow \frac{1}{2}\leq B\leq 2$

Vậy $B_{\min}=\frac{1}{2}; B_{\max}=2$

Bình luận (0)
LT
Xem chi tiết
NL
7 tháng 10 2019 lúc 8:34

\(B=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{x^2+2}{2\left(x^2+2\right)}+\frac{x^2+4x+4}{2\left(x^2+2\right)}=\frac{1}{2}+\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}\ge\frac{1}{2}\)

\(B=\frac{2\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

Bình luận (0)