Những câu hỏi liên quan
TS
Xem chi tiết
H24
1 tháng 2 2019 lúc 19:52

a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5

2n - 16 luôn luôn chia hết cho 2n - 16 

=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16

=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }

Tự làm nốt

b, tương tự 

c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8

... Tiếp tục :))

Bình luận (0)
TD
1 tháng 2 2019 lúc 19:59

a ,\(8n-59⋮2n-16\)

Mà \(2n-16⋮2n-16\) 

\(\Rightarrow4\left(2n-16\right)⋮2n-16\)

\(\Rightarrow8n-64⋮2n-16\) 

\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\) 

\(\Rightarrow8n-59-8n+64⋮2n-16\) 

\(\Rightarrow5⋮2n-16\) 

\(\Rightarrow2n-16\inƯ\left(5\right)\) 

\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\) 

\(\Rightarrow2n\in\left\{17;15;21;11\right\}\) 

\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n 

\(\Rightarrow x\in\varnothing\)

Bình luận (0)
KL
Xem chi tiết
NT
30 tháng 11 2021 lúc 23:10

e: \(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-1;2;-3\right\}\)

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
LM
27 tháng 10 2018 lúc 15:37

a.1

b.1

c.1

Bình luận (0)
ND
1 tháng 11 2020 lúc 10:00

Giải thế ai hiểu nổi hả trời???

Bình luận (0)
 Khách vãng lai đã xóa
TG
Xem chi tiết
CT
30 tháng 1 2019 lúc 21:01

a, -4(2n+3)+11 chia hết cho 2n+3

suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)

suy ra 2n+3 thuộc ước của 11

hay 2n+3 thuộc 1;-1;11;-11

hay n thuộc -1;-2;4;-7

vậy n thuộc -1;-2;4;-7 

các bài khác cũng nhân ra như vậy là tìm được n

Bình luận (0)
NN
30 tháng 1 2019 lúc 21:27

a, -4(2n+3)+11 chia hết cho 2n+3

suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)

suy ra 2n+3 thuộc ước của 11

hay 2n+3 thuộc 1;-1;11;-11

hay n thuộc -1;-2;4;-7

vậy n thuộc -1;-2;4;-7 

Bình luận (0)
DH
Xem chi tiết
MH
11 tháng 2 2022 lúc 5:34

\(a,lim\dfrac{^3\sqrt{8n^3+2n}}{-n+3}\)

\(=lim\dfrac{^3\sqrt{8+\dfrac{2}{n^2}}}{-1+\dfrac{3}{n}}=\dfrac{^3\sqrt{8}}{-1}=\dfrac{2}{-1}=-2\)

Bình luận (0)
NL
12 tháng 2 2022 lúc 21:02

\(\lim\dfrac{\left(2n\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n-1\right)\left(3-2n\right)}=\lim\dfrac{\left(2+\dfrac{1}{n\sqrt{n}}\right)\left(1+\dfrac{3}{\sqrt{n}}\right)}{\left(1-\dfrac{1}{n}\right)\left(\dfrac{3}{n}-2\right)}=\dfrac{2.1}{1.\left(-2\right)}=-1\)

Bình luận (0)
CC
Xem chi tiết
NC
24 tháng 4 2020 lúc 17:07

a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)

= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)

b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))

= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )

= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)

= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)

= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)

= lim \(-3n=-\infty\)

c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)

= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)

Bình luận (0)
NC
Xem chi tiết
NL
21 tháng 4 2020 lúc 12:35

a/ \(=\lim\limits\frac{1-\frac{1}{n}}{2+\frac{7}{n}}=\frac{1-0}{2+0}=\frac{1}{2}\)

b/ \(=lim\frac{4-\frac{1}{n}+\frac{1}{n^2}}{6+\frac{1}{n^2}}=\frac{4-0+0}{6+0}=\frac{4}{6}=\frac{2}{3}\)

c/ \(=lim\frac{3-\frac{1}{n}}{\frac{1}{n^2}-1}=\frac{3-0}{0-1}=\frac{3}{-1}=-3\)

d/ \(=lim\frac{\frac{8}{n}+\frac{1}{n^2}}{1-\frac{2}{n}+\frac{19}{n^2}}=\frac{0+0}{1-0+0}=\frac{0}{1}=0\)

e/ \(=lim\frac{\sqrt{9-\frac{4}{n^2}}+2}{2+\frac{7}{n}}=\frac{\sqrt{9}+2}{2+0}=\frac{5}{2}\)

Bình luận (0)
H24
Xem chi tiết
NL
4 tháng 12 2021 lúc 15:49

\(\lim\limits\left(2-3n\right)^4\left(n+1\right)^3=\lim n^7\left(3-\dfrac{2}{n}\right)^4\left(1+\dfrac{1}{n}\right)^3=+\infty\)

\(\lim\left(\sqrt[3]{n+4}-\sqrt[3]{n+1}\right)=\lim\dfrac{3}{\sqrt[3]{\left(n+4\right)^2}+\sqrt[3]{\left(n+4\right)\left(n+1\right)}+\sqrt[3]{\left(n+1\right)^2}}=0\)

\(\lim\left(\sqrt[3]{8n^3+3n^2+4}-2n+6\right)=\lim\dfrac{8n^3+3n^2+4-\left(2n-6\right)^3}{\sqrt[3]{\left(8n^3+3n^2+4\right)^2}+\left(2n-6\right)\sqrt[3]{8n^3+3n^2+4}+\left(2n-6\right)^2}\)

\(=\lim\dfrac{75n^2-216n+220}{\sqrt[3]{\left(8n^3+3n^2+4\right)^2}+\left(2n-6\right)\sqrt[3]{8n^3+3n^2+4}+\left(2n-6\right)^2}\)

\(=\lim\dfrac{75-\dfrac{216}{n}+\dfrac{220}{n^2}}{\sqrt[3]{\left(8+\dfrac{3}{n}+\dfrac{4}{n^3}\right)^2}+\left(2-\dfrac{6}{n}\right)\sqrt[3]{8+\dfrac{3}{n}+\dfrac{4}{n^3}}+\left(2-\dfrac{6}{n}\right)^2}\)

\(=\dfrac{75}{\sqrt[3]{8^2}+2.\sqrt[3]{8}+2^2}=...\)

Bình luận (2)
NL
4 tháng 12 2021 lúc 15:52

d.

\(\lim\left(\sqrt[3]{8n^3+3n^2-2}+\sqrt[3]{5n^2-8n^3}\right)\)

\(=\lim\left(\sqrt[3]{8n^3+3n^2-2}-\sqrt[3]{8n^3-5n^2}\right)\)

\(=\lim\dfrac{8n^3+3n^2-2-\left(8n^3-5n^2\right)}{\sqrt[3]{\left(8n^3+3n^2-2\right)^2}+\sqrt[3]{\left(8n^3+3n^2-2\right)\left(8n^3-5n^2\right)}+\sqrt[3]{8n^3-5n^2}}\)

\(=\lim\dfrac{8n^2-2}{\sqrt[3]{\left(8n^3+3n^2-2\right)^2}+\sqrt[3]{\left(8n^3+3n^2-2\right)\left(8n^3-5n^2\right)}+\sqrt[3]{8n^3-5n^2}}\)

\(=lim\dfrac{8-\dfrac{2}{n^2}}{\sqrt[3]{\left(8+\dfrac{3}{n}-\dfrac{2}{n^3}\right)^2}+\sqrt[3]{\left(8+\dfrac{3}{n}-\dfrac{2}{n^3}\right)\left(8-\dfrac{5}{n}\right)}+\sqrt[3]{\left(8-\dfrac{5}{n}\right)^2}}\)

\(=\dfrac{8}{\sqrt[3]{8^2}+\sqrt[3]{8.8}+\sqrt[3]{8^2}}=...\)

Bình luận (1)
GF
Xem chi tiết
DH
27 tháng 10 2016 lúc 17:34

a/ước chung là 3

b/ước chung là 1

mk chỉ làm mẫu 2 câu thôi còn bạn tự làm đi 

Bình luận (0)