Những câu hỏi liên quan
MH
Xem chi tiết
NL
7 tháng 8 2021 lúc 17:31

\(\dfrac{a^3}{b}+ab+\dfrac{b^3}{c}+bc+\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{a^4b}{b}}+2\sqrt{\dfrac{b^4c}{c}}+2\sqrt{\dfrac{c^4a}{a}}=2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

Bình luận (0)
TK
7 tháng 8 2021 lúc 17:32

áp dụng AM GM ta có a^3/b+ab>=2a^2

chứng minh tương tự => a^3/b+b^3/c+c^3/a>=2(a^2+b^2+c^2)-(ab+bc+ca)

mà ta có a^2+b^2+c^2>=(ab+bc+ca)

=>a^3/b+b^3/c+c^3/a>= ab+bc+ca

"=" xảy ra khi a=b=c

Bình luận (0)
TV
Xem chi tiết
H24
5 tháng 4 2021 lúc 21:32

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)

Dấu = xảy ra khi a=b=c=1/3

Bình luận (0)
VH
5 tháng 4 2021 lúc 21:37

Áp dụng hệ quả bất đẳng thức Cô - si , ta có :
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)
\(\Leftrightarrow\)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\cdot1\ge9\)

\(\Leftrightarrow\)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

Bình luận (0)
PD
6 tháng 4 2021 lúc 16:21

Áp dụng BĐT Cauchy Shwarz dạng Engel ta được:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge \dfrac{(1+1+1)^2}{a+b+c}=\dfrac{9}{1}\)

\(\to \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge 9\)

\(\to\) Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

\(\to a=b=c\)

Bình luận (0)
CP
Xem chi tiết
PB
18 tháng 2 2023 lúc 20:53

Đặt a/b = b/c=k

=> a=bk;b=ck                                                                           (1)

Từ (1) =>  a/a-b= bk/bk-b=bk/b(k-1)=k/k-1                                 (2)

Từ (1) => c/c-d= dk/dk-d=dk/d(k-1) = k/k-1                                    (3)

Từ (2) và (3)=> a/a-b = c/c-d

Cho mình 5 sao nha

 

 

 

 

Bình luận (0)
LV
Xem chi tiết
MY
4 tháng 8 2021 lúc 16:06

đặt biể thức cần chứng minh là P

\(\dfrac{a}{\left(b+c\right)^2}=\dfrac{a^2}{a\left(b+c\right)^2}=\dfrac{\dfrac{a^2}{\left(b+c\right)^2}}{\dfrac{a\left(b+c\right)^2}{\left(b+c\right)^2}}=\dfrac{\left(\dfrac{a}{b+c}\right)^2}{a}\)

\(t\)ương tự

\(=>P\ge\dfrac{\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2}{a+b+c}\)

\(=>P\ge\dfrac{[\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}]^2}{a+b+c}\)

\(=>P\ge\dfrac{[\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}]^2}{a+b+c}=\dfrac{[\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}]^2}{a+b+c}\)

\(=>P\ge\dfrac{\dfrac{9}{4}}{a+b+c}=\dfrac{9}{4\left(a+b+c\right)}\) dấu"=" xảy ra<=>a=b=c

Bình luận (0)
H24
Xem chi tiết
MP
2 tháng 7 2017 lúc 7:06

\(M=a\left(a+b\right)\left(a+c\right)=a\left(a^2+ac+ba+bc\right)\)

\(=a^3+a^2c+a^2b+abc=a^2\left(a+b+c\right)+abc\)

\(=a^20+abc=abc\) (1)

\(N=b\left(b+c\right)\left(b+a\right)=b\left(b^2+ba+cb+ca\right)\)

\(=b^3+b^2a+b^2c+abc=b^2\left(a+b+c\right)+abc\)

\(=b^20+abc=abc\) (2)

\(P=c\left(c+a\right)\left(c+b\right)=c\left(c^2+cb+ac+ab\right)\)

\(=c^3+c^2b+c^2a+abc=c^2\left(a+b+c\right)+abc\)

\(c^20+abc=abc\) (3)

từ (1);(2)và(3) ta có : \(M=N=P=abc\)

vậy khi \(\left(a+b+c\right)=0\)thì \(M=N=P\) (đpcm)

Bình luận (0)
TD
2 tháng 7 2017 lúc 7:09

Hỏi đáp Toán

Chúc bạn học tốt !!!

Bình luận (0)
NL
Xem chi tiết
H24
12 tháng 9 2017 lúc 20:05

\(a+b+c=0\)

\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(M=a\left(a+b\right)\left(a+c\right)=a.\left(-c\right).\left(-b\right)=abc\)

\(N=b\left(b+c\right)\left(a+b\right)=b.\left(-a\right).\left(-c\right)=abc\)

\(P=c\left(b+c\right)\left(a+c\right)=c.\left(-a\right).\left(-b\right)=abc\)

\(\Rightarrow\)\(M=N=P\)

Bình luận (0)
TA
Xem chi tiết
DD
Xem chi tiết
PT
29 tháng 10 2016 lúc 19:58

a + b + c = 0 \(\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}M=a.\left(-c\right).\left(-b\right)=abc\\N=b.\left(-a\right).\left(-c\right)=abc\\P=c.\left(-b\right).\left(-a\right)=abc\end{cases}\Rightarrow M=N=P}\)

Bình luận (0)
TT
29 tháng 10 2016 lúc 20:02

Ta có : a+b+c=0

Suy ra :a+b=-c ; a+c=-b và b+c=-a

Nên : M=a(a+b)(a+c)

            =a.(-c).(-b)=abc            (1)

         N=b(b+c)(b+a)

         =b.(-a).(-c)=abc           (2)

Và   : P=c(c+a)(c+b)

            =c.(-b).(-a)=abc                 (3)

Từ (1)(2) và (3) suy ra : Đpcm

Bình luận (0)
LQ
20 tháng 9 2020 lúc 9:06

hơn 6.000.000 tại 70 quốc gia bao gồm cả Việt Nam. Kỳ thi ra đời nhằm nhân rộng niềm vui học Toán theo hướng phát triể

Bình luận (0)
 Khách vãng lai đã xóa
VV
Xem chi tiết
LC
4 tháng 6 2015 lúc 8:41

Ta có: a+b+c=0

=>a+b=0-c

    a+c=0-b

    b+a=0-c

    b+c=0-a

    c+a=0-b

    c+b=0-a

Lại có:

           M=a(a+b)(a+c)=a(0-c)(0-b)=0.a.(0-b)-c.a.(0-b)=0-0.c.a+a.b.c=0-0+abc=abc

            N=b(b+c)(b+a)=b(0-a)(0-c)=0.b.(0-c)-a.b.(0-c)=0-0.a.b+a.b.c=0-0+abc=abc

             P=c(c+a)(c+b)=c(0-b)(0-a)=0.c.(0-a)-b.c.(0-a)=0-0.b.c+a.b.c=0-0+abc=abc

=> M=N=P=abc

Vậy M=N=P

Bình luận (0)