Những câu hỏi liên quan
TT
Xem chi tiết
NT
16 tháng 3 2023 lúc 20:37

loading...  

Bình luận (1)
MY
Xem chi tiết
NL
26 tháng 7 2021 lúc 15:35

Với \(x=0\) ko phải nghiệm

Với \(x\ne0\) chia 2 vế cho \(x^2\) ta được:

\(x^2+\dfrac{1}{x^2}+3x+\dfrac{3}{x}+m=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)+m-2=0\) (1)

Đặt \(x+\dfrac{1}{x}=t\Rightarrow x^2-tx+1=0\) (2)

(2) có 2 nghiệm pb khi và chỉ khi:

\(\Delta=t^2-4>0\Rightarrow\left[{}\begin{matrix}t>2\\t< -2\end{matrix}\right.\)

Khi đó (1) trở thành:

\(t^2+3t+m-2=0\) (3)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (3) có 2 nghiệm pb thỏa mãn \(\left[{}\begin{matrix}t>2\\t< -2\end{matrix}\right.\)

(3) \(\Leftrightarrow t^2+3t-2=-m\)

Đặt \(f\left(t\right)=t^2+3t-2\)

\(f\left(-2\right)=-4\) ; \(f\left(2\right)=8\)

Đồ thị hàm \(f\left(t\right)\):

undefined

Từ đồ thị ta thấy \(y=-m\) cắt \(y=f\left(t\right)\) tại 2 điểm đều nằm ngoài \(\left[-2;2\right]\) khi và chỉ khi:

\(\left[{}\begin{matrix}-\dfrac{17}{4}< -m< -4\\-m>8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4< m< \dfrac{17}{4}\\m< -8\end{matrix}\right.\)

Bình luận (1)
DH
Xem chi tiết
NM
11 tháng 11 2021 lúc 7:20

\(1,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)

\(2,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-4\right)^2-4\left(-3\right)\left(-2m+1\right)\ge0\\x_1+x_2=\dfrac{4}{-3}< 0\\x_1x_2=\dfrac{-2m+1}{-3}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28-24m\ge0\\-2m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{7}{6}\\m>\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< m\le\dfrac{7}{6}\)

Bình luận (1)
H24
Xem chi tiết
DT
Xem chi tiết
DY
Xem chi tiết
MY
17 tháng 12 2021 lúc 21:55

\(x^4+2x^3+5x^2+4x-1-m=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-1-m=0\left(1\right)\)

\(đặt:x^2+x=t\ge\dfrac{-\Delta}{4a}=-\dfrac{1}{4}\)

\(\left(1\right)\Leftrightarrow t^2+4t-1-m=0\) có nghiệm trên \([-\dfrac{1}{4};\text{+∞})\)

\(f\left(t\right)=t^2+4t-1=m\)

\(f\left(-\dfrac{b}{2a}\right)=-5\)

\(f\left(-\dfrac{1}{4}\right)=-\dfrac{31}{16}\Rightarrow m\ge-\dfrac{31}{16}\Rightarrow\left[{}\begin{matrix}t=\dfrac{-b}{2a}=-2\Rightarrow x^2+x+2=0\left(vô-nghiệm\right)\left(loại\right)\\\left\{{}\begin{matrix}t1=\dfrac{-4+\sqrt{20+4m}}{2}=-2+\sqrt{5+m}\\t2=\dfrac{-4-\sqrt{20+4m}}{2}=-2-\sqrt{5+m}\end{matrix}\right.\end{matrix}\right.\) 

\(x^2+x=t1=-2+\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=\sqrt{5+m}\) có nghiệm thuộc \(\left[-1;1\right]\)

\(\Rightarrow f\left(-\dfrac{b}{2a}\right)=\dfrac{7}{4}\)

\(f\left(-1\right)=2;f\left(1\right)=4\)

\(\Rightarrow\dfrac{7}{4}\le\sqrt{5+m}\le4\Leftrightarrow\dfrac{-31}{16}\le m\le11\)

\(x^2+x=t2=-2-\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=-\sqrt{5+m}\)

có nghiệm trên \(\left[-1;1\right]\)

\(x^2+x+2>0\Rightarrow x^2+x+2=-\sqrt{5+m}< 0\left(vô-lí\right)\Rightarrow vô-nghiệm\forall m\)

\(\Rightarrow\dfrac{-31}{16}\le m\le11\) thì pt có  nghiệm thuộc \(\left[-1;1\right]\)

 

 

Bình luận (0)
H24
Xem chi tiết
HP
5 tháng 1 2021 lúc 17:12

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Bình luận (1)
HT
Xem chi tiết
BB
Xem chi tiết
NL
18 tháng 1 2022 lúc 13:16

Pt có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Rightarrow1.\left(m-1\right)< 0\Rightarrow m< 1\)

Mặt khác theo Viet: \(x_1+x_2=-2< 0\)

\(\Rightarrow\) Nghiệm âm có giá trị tuyệt đối lớn hơn

Bình luận (0)