cho \(x,y,z>0\)và \(x+y+z=1\).CM:
\(\frac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
ta có bđt cần chứng minh
\(\frac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\Leftrightarrow\sqrt{xy+z}+\sqrt{2\left(x^2+y^2\right)}\ge1+\sqrt{xy}\)
Áp dụng bđt bu nhi ta có
\(\sqrt{2\left(x^2+y^2\right)}\ge x+y\) (1)
mà x+y+z=1\(\Rightarrow xy+z=xy+z\left(x+y+z\right)=\left(z+x\right)\left(z+y\right)\)
áp dụng bu nhi a ta có \(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\) (2)
từ (1) và (2) => \(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\ge x+y+z+\sqrt{xy}=1+\sqrt{xy}\)
cho x,y,z dương thỏa mãn x+y+z=1. CMR: \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Ta có x + y + z = 1 nên z = 1 - x - y.
Bất đẳng thức cần chứng minh tương đương:
\(\dfrac{\sqrt{xy+z\left(x+y+z\right)}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
\(\Leftrightarrow\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2x^2+2y^2}\ge1+\sqrt{xy}\).
Áp dụng bất đẳng thức Cauchy - Schwarz:
\(\left(z+x\right)\left(z+y\right)\ge\left(\sqrt{z}.\sqrt{z}+\sqrt{x}.\sqrt{y}\right)^2=\left(z+\sqrt{xy}\right)^2\)
\(\Rightarrow\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}=\sqrt{xy}-x-y+1\); (1)
\(\sqrt{2x^2+2y^2}=\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge x+y\). (2)
Cộng vế với vế của (1), (2) ta có đpcm.
Cho 3 số thực dương x, y, z thỏa mãn x+y+z=1
Chứng minh rằng \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Đặt vế trái của BĐT cần chứng minh là P
Ta có:
\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)
\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)
Cho x,y,z là các số dương và x+y+z=1
\(\frac{\sqrt{xy+z}+\sqrt{2\text{x}^2+2y^2}}{1+\sqrt{xy}}\ge1\)
cho x,y,z>0 và x+y+z=1 chứng minh\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}\sqrt{yz}+\sqrt{zx}\)
cho x,y,z>0 vã+y+x=1. ttim GTNN cua A= \(\frac{\sqrt{xy+z}+\sqrt{2x^2}+2y^2}{1+\sqrt{xy}}\)
cho x,y,z là các số dương và x+y+z=1 chứng minh rằng
\(\frac{\sqrt{xy+x}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
mk nhầm phải là
\(\frac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Ta có \(\sqrt{z+yx}=\sqrt{z\left(x+y+z\right)+xy}=\sqrt{\left(x+z\right)\left(y+z\right)}\ge\sqrt{\left(z+\sqrt{xy}\right)^2}=z+\sqrt{xy}\)
\(\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge\sqrt{\left(x+y\right)^2}=x+y\)(bất đẳng buniacoxki)
Khi đó \(VT\ge\frac{x+y+z+\sqrt{xy}}{1+\sqrt{xy}}=\frac{1+\sqrt{xy}}{1+\sqrt{xy}}=1\)
Dấu bằng xảy ra khi x=y=z=1/3
Cho x,y,z > 0 ; \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\).Chung minh:\(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}}+\sqrt{\frac{xz}{x+z+2y}}\\\)≤\(\frac{1}{2}\)
Cho x;y;z>0;\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) . CMR:\(\frac{\sqrt{x^2+2y^2}}{xy}+\frac{\sqrt{y^2+2z^2}}{yz}+\frac{\sqrt{z^2+2x^2}}{zx}\ge\sqrt{3}\)