Cho tam giác ABC nhọn có các đường cao BE và CF.Gọi I là trung điểm BC.cm:Tam giácIEF cân
Cho tam giác nhọn ABC có các đường cao AD,BE,CF cắt nhau tại H,gọi O là trung điểm của BC,I là trung điểm của AH,K là giao điểm của EF,OI.Chứng minh tam giác IEO và tam giác IFO vuông
Cho tam giác ABC có ba góc nhọn, không là tam giác cân, AB < AC và nội tiếp đường tròn tâm O, đường kính BE. Các đường cao AD và BK của tam giác ABC cắt nhau tại điểm H. Đường thẳng BK cắt đường tròn (O) tại điểm thứ hai là F. Gọi I là trung điểm của cạnh AC. Chứng minh rằng:
a) Tứ giác AFEC là hình thang cân.
b) BH = 2OI và điểm H đối xứng với F qua đường thẳng AC.
Cho tam giác ABC nhọn đường cao AH vẽ về phía ngoài tam giác ABC các tam giác vuông cân ABD ;ACE cân tại A gọi K là giao điểm của AH và DE
1 chứng minh BE=CD VÀ BE vuông góc với CD
2 Chứng minh KL là trung điểm của DE và AK=1/2BC
a, BE=CD và BE vuông góc với CD.
b, KL là trung điểm cuarDE và AK=1/2BC.
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEj = 90
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
xét tứ giác BFHD có
góc BFH + góc BDH = 180
mà nó là 2 góc đối => nội tiếp => góc FDH = góc FBE
chứng minh tương tự với tứ giác CEHD
=> góc HDE = góc HCE
Xét tứ giác BFEC có
góc BFC = góc BEF = 90
mà nó là 2 góc kề => tứ giác nội tiếp
mà góc BEC = 1/2 sđ BC = 90 => SĐ BC = 180 => BC là đường kính mà I là trung điểm BC => I là tâm đường tròn ngoại tiếp tứ giác BFEC
=> góc FIE = góc FBE + góc FCE
=> Góc FIE = góc FDH+góc HDE => góc FIE = góc FDE
mà nó là 2 góc kề => nội tiếp
=> điều phải cm
Cho tam giác ABC có 3 góc nhọn ( AB<AC ), các đường cao AD, BE, CF cắt nhau tại H.
a) CM : Tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) CM : Tam giác AEF đồng dạng tam giác ABC và góc AEF = góc ABC
c) Gọi I là trung điểm của AH, M là trung điểm của BC. CM : MI vuông góc EF
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK