Những câu hỏi liên quan
TN
Xem chi tiết
PB
Xem chi tiết
CT
23 tháng 1 2018 lúc 4:31

Ta có

P = x 10   –   13 x 9   +   13 x 8   –   13 x 7   +   …   -   13 x   +   10

 

=   x 10   –   12 x 9   –   x 9   +   12 x 8   +   x 8   –   12 x 7   –   x 7   +   12 x 6   +   …   + x 2   –   12 x   –   x   +   10     =   x 9 ( x   –   12 )   –   x 8 ( x   –   12 )   +   x 7 ( x   –   12 )   -   …   +   x ( x   –   12 )   –   x   +   10

Thay x = 12 vào P ta được

P   =   12 9 . ( 12   –   12 )   –   12 8 ( 12   –   12 )   +   12 7 ( 12   –   12 )             -   …   +   12 ( 12   –   12 )   –   12   +   10

= 0 + … + 0 – 2 = -2

Vậy P = -2

Đáp án cần chọn là: A

Bình luận (0)
CT
Xem chi tiết
NT
16 tháng 8 2021 lúc 14:18

a: Ta có: x=31

nên x-1=30

Ta có: \(A=x^3-30x^2-31x+1\)

\(=x^3-x^2\left(x-1\right)-x^2+1\)

\(=x^3-x^3+x^2-x^2+1\)

=1

c: Ta có: x=16

nên x+1=17

Ta có: \(C=x^4-17x^3+17x^2-17x+20\)

\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20\)

\(=20-x=4\)

Bình luận (0)
NT
16 tháng 8 2021 lúc 14:19

d: Ta có: x=12

nên x+1=13

Ta có: \(D=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\)

\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+10\)

\(=10-x\)

=-2

Bình luận (0)
CT
Xem chi tiết
NT
14 tháng 8 2021 lúc 21:18

d: Ta có: x=12

nên x+1=13

Ta có: \(D=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\)

\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+10\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+1+9\)

\(=-x+10=-2\)

Bình luận (0)
NM
Xem chi tiết
AN
11 tháng 11 2016 lúc 20:52

Nhầm đề

Bình luận (0)
AN
11 tháng 11 2016 lúc 20:52

x10 - 13x9 + 13x8 - ... - 13x + 13

= (x10 - 12x9) + (- x9 + 12x8) + ... + (- x + 12) + 1

= x9(x - 12) + x8(- x + 12) +...+ (- x + 12) + 1 = 1

Bình luận (0)
AN
11 tháng 11 2016 lúc 20:57

Bạn tự sửa nhé mình nhầm  - 14 thành 13

Bình luận (0)
ND
Xem chi tiết
DG
3 tháng 9 2018 lúc 0:43

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

Bình luận (0)
H24
7 tháng 7 2020 lúc 23:27

\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)

\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)

\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)

\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)

Thay x = 79 vào biểu thức trên , ta có

\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)

\(=0+79+15\)

\(=94\)

Vậy \(P(x)=94\)khi x = 79

\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)

\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)

\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)

\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)

Thay x = 9 vào biểu thức trên , ta có

\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)

\(=0-9+10\)

\(=1\)

Vậy \(Q(x)=1\)khi x = 9

\(c.R(x)=x^4-17x^3+17x^2-17x+20\)

\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)

\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)

\(=(x-16)(x^3-x^2+x)-x+20\)

Thay x = 16 vào biểu thức trên , ta có

\(R(16)=(16-16)(16^3-16^2+16)-16+20\)

\(=0-16+20\)

\(=4\)

Vậy \(R(x)=4\)khi x = 16

\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)

\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)

\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)

\(=(x-12)(x^9-x^8+....+x)-x+10\)

Thay x = 12 vào biểu thức trên , ta có

\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)

\(=0-12+10\)

\(=-2\)

Vậy \(S(x)=-2\)khi x = 12

Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện

Chúc bạn học tốt , nhớ kết bạn với mình

Bình luận (0)
 Khách vãng lai đã xóa
GG
Xem chi tiết
ST
24 tháng 7 2018 lúc 21:33

a, x = 79 => x + 1 = 80

Ta có:\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)

\(=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)

\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+x^2+x+15\)

\(=x+15=79+15=94\)

Còn lại tương tự

Bình luận (0)
DG
3 tháng 9 2018 lúc 0:38

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

Bình luận (0)
CS
Xem chi tiết
AH
24 tháng 7 2018 lúc 23:29

Lời giải:

a) Với \(x=79\)

\(P(x)=x^7-80x^6+80x^5-80x^4+...+80x+15\)

\(=(x^7-79x^6)-(x^6-79x^5)+(x^5-79x^4)-....-(x^2-79x)+x+15\)

\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-...-x(x-79)+x+15\)

\(=(x^6-x^5+x^4-...-x)(x-79)+x+15\)

\(=(x^6-x^5+x^4-...-x)(79-79)+79+15=79+15=94\)

b) Hoàn toàn tương tự phần a.

\(Q(x)=(x^{14}-9x^{13})-(x^{13}-9x^{12})+(x^{12}-9x^{11})-...+(x^2-9x)-x+10\)

\(=x^{13}(x-9)-x^{12}(x-9)+x^{11}(x-9)-...+x(x-9)-x+10\)

\(=(x-9)(x^{13}-x^{12}+x^{11}-...+x)-x+10\)

\(=(9-9)(x^{13}-x^{12}+...+x)-9+10=0-9+10=1\)

Bình luận (0)
AH
24 tháng 7 2018 lúc 23:33

c)

\(R(x)=(x^4-16x^3)-(x^3-16x^2)+(x^2-16x)-x+20\)

\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)

\(=(x-16)(x^3-x^2+x)-x+20\)

Với $x=16$ thì $Q(x)=(16-16)(x^3-x^2+x)-16+20=0-16+20=4$

d)

\(S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+x(x-12)-x+10\)

\(=x^9(x-12)-x^8(x-12)+x^7(x-12)-...+x(x-12)-x+10\)

\(=(x-12)(x^9-x^8+x^7-..+x)-x+10\)

\(=(12-12)(x^9-x^8+x^7-...+x)-12+10=-12+10=-2\)

Bình luận (0)
PM
Xem chi tiết
PN
7 tháng 4 2017 lúc 20:14

b) Thay x+1=10 ta được:

Q(x) = \(x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\) \(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1=1\)

Bình luận (0)
PN
7 tháng 4 2017 lúc 20:24

d) Thay x+1=13, ta được:

S(x) = \(x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+10\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+10=-12+10=-2\)

Bình luận (0)
PN
7 tháng 4 2017 lúc 20:42

c) Nếu x = 16 thì ta giải như sau:

Thay x+1=17, ta được:

R(x) = \(x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+20\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20=-16+20=4\)

Bình luận (0)