giúp với
\(\sqrt{5a}.\sqrt{45a}-3a\)với a > 0
1) \(\sqrt{9a^2.b^2}\) với a<0, b<0
2) \(\sqrt{3a}.\sqrt{27a}\) với a \(\ge\)0
3) \(\sqrt{3a^5}.12a\) với a>0
4) \(\sqrt{5a}.\sqrt{45a}-3a\) ( với a ≥ 0)
5) \(\sqrt{3+\sqrt{a}}\).\(\sqrt{3-\sqrt{a}}\)
6) \(\sqrt{3+\sqrt{5}}\). \(\sqrt{3\sqrt{5}}\)
\(1) \sqrt{9a^2.b^2}\)=3ab
\(2) \sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=9a\)
\(3) \sqrt{3a^5}.12a=12\sqrt{3a^7}\)
\(4) \sqrt{5a}.\sqrt{45a}-3a=15a-3a=12a\)
\(5) \sqrt{3+\sqrt{a}}.\sqrt{3-\sqrt{a}}=\sqrt{(3+\sqrt{a}).(3-\sqrt{a})} =\sqrt{9-a} \)
\(6) \sqrt{3+\sqrt{5}}.\sqrt{3\sqrt{5}} =\sqrt{\sqrt{3\sqrt{5}}.(3+\sqrt{5})} =\sqrt{9+\sqrt{15}}\)
1) \(\sqrt{9a^2b^2}=3ab\)
2) \(\sqrt{3a}\cdot\sqrt{27a}=9a\)
4) \(\sqrt{5a}\cdot\sqrt{45a}-3a=15a-3a=12a\)
a \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
b \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a>0
c \(\sqrt{5a.45a}-3a\) với a<0
a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
b: \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}=\sqrt{\dfrac{6a^2}{24}}=\sqrt{\dfrac{a^2}{4}}=\dfrac{a}{2}\)
c: \(\sqrt{5a\cdot45a}-3a=-15a-3a=-18a\)
Rút gọn:
A = \(\sqrt{27.48\left(1-a^2\right)}\) với a > 1
B = \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\) với a > b
C = \(\sqrt{5a}.\sqrt{45a}-3a\) với a ≥ 0
D = \(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\) với a tùy ý
a) Ta có: \(\sqrt{27\cdot48\left(1-a^2\right)}\)
\(=\sqrt{3^4\cdot4^2\cdot\left(1-a^2\right)}\)
\(=36\sqrt{1-a^2}\)
c) Ta có: \(\sqrt{5a}\cdot\sqrt{45a}-3a\)
\(=15a-3a=12a\)
b) Ta có: \(B=\dfrac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot a^2\cdot\left(a-b\right)\)
\(=a^2\)
d) Ta có: \(D=\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)
\(=a^2-6a+9-\sqrt{36a^2}\)
\(=a^2-6a+9-\left|6a\right|\)
\(=\left[{}\begin{matrix}a^2-6a+9-6a\left(a\ge0\right)\\a^2-6a+9+6a\left(a< 0\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}a^2-12a+9\\a^2+9\end{matrix}\right.\)
\(A=9.4\left|1-a\right|=36\left(a-1\right)\) (a>1)
\(B=\dfrac{a^2\left|a-b\right|}{a-b}=\dfrac{a^2\left(a-b\right)}{a-b}=a^2\) (a>b)
\(C=5.3\left|a\right|-3a=15a-3a=12a\)
\(D=9-6a+a^2-6\left|a\right|=\left[{}\begin{matrix}a^2-12a+9\left(a\ge0\right)\\a^2+9\left(a< 0\right)\end{matrix}\right.\)
Rút gọn :
a, A = \(\sqrt{27.48\left(1-a^2\right)}vớia>1\)
b, B = \(\frac{1}{a-b}\sqrt{a^4\left(a-b^2\right)}\) với a > b
c, C= \(\sqrt{5a}.\sqrt{45a}-3a\) với a >= 0
\(\sqrt{5a}.\sqrt{45a}-3a,a\ge0\)
Mk
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
--
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ko
-
-
-
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
//.
.
.
.
.
..
..
.
.
.
.
..
.
.
..
.
..
.
..
.
.
.
.
..
.
.
...
bt
BT. RÚT GỌN
1.( với a >=3 )\(\sqrt{\frac{24}{3}}\times\sqrt{\frac{3a}{8}}\)
2. ( với a>3 )\(\sqrt{13a}\times\sqrt{\frac{52}{a}}\)
3. ( với a >=0 )\(\sqrt{5a}\times\sqrt{45a}-3a\)
4. ( 3-a )2-\(\sqrt{0,2}\times\sqrt{180a^2}\)
GIÚP MÌNH VỚI!!!!!!!HHHH
1) \(\sqrt{\frac{24}{3}}\cdot\sqrt{\frac{3a}{8}}=\sqrt{\frac{72a}{24}}=\sqrt{3a}\)
2) \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}=\sqrt{\frac{13a\cdot52}{a}}=\sqrt{676}=26\)
3) \(\sqrt{5a}\cdot\sqrt{45a}-3a=\sqrt{225a^2}-3a=15a-3a=12a\)
4) \(\left(3-a\right)^2-\sqrt{0,2}\cdot\sqrt{180a^2}=a^2-6a+9-\sqrt{36a^2}=a^2-6a+9-6a=a^2-12a+9\)
Rút gọn các biểu thức sau:
a. \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với \(a\ge0;\)
b. \(\sqrt{13a}.\sqrt{\dfrac{52}{a}}\) với a > 0;
c. \(\sqrt{5a}.\sqrt{45a}-3a\) với \(a\ge0;\)
d. \(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}.\)
a) ĐS: ; b) ĐS: 26; c) ĐS: 12a
d) - = - 6a + 9 -
= - 6a + 9 - = - 6a + 9 - 6│a│.
Khi a ≥ 0 thì │a│= a.
Do đó - = - 6a + 9 -6a = - 12a + 9.
Khi a < 0 thì │a│= a.
Do đó - = - 6a + 9 + 6a = + 9.
Rút gọn
\(A=\sqrt{27.48\left(1-a^2\right)}vớia>1\)
\(B=\frac{1}{a-b}.\sqrt{a^4.\left(a-b\right)^2}\)Với a>b
\(C=\sqrt{5a}.\sqrt{45a}-3a\)với a> hoặc bằng 0
\(D=\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)Với a tùy ý
\(A=\sqrt{9.3.3.16\left(1-a^2\right)}=3.3.4.\left|1-a\right|=36\left(a-1\right)\)
\(B=\frac{1}{a-b}a^2.\left|a-b\right|=\frac{a^2\left(a-b\right)}{a-b}=a^2\)
\(C=\sqrt{5.45.a^2}-3a=\sqrt{5^2.3^2.a^2}-3a=15\left|a\right|-3a=15a-3a=12a\)
\(D=\left(3-a\right)^2-\sqrt{\frac{2.180}{10}a^2}=\left(3-a\right)^2-6\left|a\right|\)
1, Rút gọn
A=\(3\sqrt{5a}-\sqrt{20a}+4\sqrt{45a}+\: \sqrt{a}\)
Với a\(\ge\)0
Với a\(\ge\)0,ta có
A=\(3\sqrt{5a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)
A=\(3\sqrt{5a}-\sqrt{4.5a}+4\sqrt{9.5a}+\sqrt{a}\)
A=\(3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)
A=\(13\sqrt{5a}+\sqrt{a}\)
Lời giải:
\(A=3\sqrt{5a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}=3\sqrt{5}.\sqrt{a}-\sqrt{4}.\sqrt{5}.\sqrt{a}+4.\sqrt{9}.\sqrt{5}.\sqrt{a}+\sqrt{a}\)
\(=3\sqrt{5}.\sqrt{a}-2\sqrt{5}\sqrt{a}+12\sqrt{5}.\sqrt{a}+\sqrt{a}\)
\(=\sqrt{a}(3\sqrt{5}-2\sqrt{5}+12\sqrt{5}+1)=\sqrt{a}(13\sqrt{5}+1)\)