Cho tam giác ABC vuông tại A, AB=3cm;AC=4cm. Vẽ đường tròn(A ; 2,8cm). Xác định vị trí tương đối của đường thẳng BC và đường tròn(A ; 2,8cm)
Cho tam giác ABC vuông tại A, AB=3cm;AC=4cm. Vẽ đường tròn(A ; 2,8cm). Xác định vị trí tương đối của đường thẳng BC và đường tròn(A ; 2,8cm)
Cho tam giác ABC vuông tại A có AB=3cm, AC=4cm. Vẽ đường tròn tâm A bán kính 2,8cm. Hãy xác định vị trí tương đối của đường thẳng BC và đường tròn (A;2,8)
Chứng Minh
Cho tam giác ABC vuông tại A ( AB < AC ). Vẽ đường tròn tâm O đường kính BC
a. Xác định vị trí tương đối của điểm A với đường tròn (O)
b. Tiếp tuyến tại A và B của đường tròn O cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt AD tại E, cắt AC tại I. Xác định vị trí tương đối của EC với đường tròn O
c. CM rằng: EC2 = EA.ED - OI.OE
Cho tam giác ABC vuông tại A ( AB < AC ). Vẽ đường tròn tâm O đường kính BC
a. Xác định vị trí tương đối của điểm A với đường tròn (O)
b. Tiếp tuyến tại A và B của đường tròn O cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt AD tại E, cắt AC tại I. Xác định vị trí tương đối của EC với đường tròn O
c. CM rằng: EC2 = EA.ED - OI.OE
a: Vì ΔABC vuông tại A
nên A nằm trên (O)
b: ΔOAC cân tại O
mà OI là đường cao
nên OI là phân giác của gócc AOC
Xét ΔOAE và ΔOCE có
OA=OC
góc AOE=góc COE
OE chung
Do đó: ΔOAE=ΔOCE
=>góc OCE=90 độ
=>EC là tiếp tuyến của (O)
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm Ở.các đường cao AD,BE cắt nhau tại H.Gọi I là tâm đường tròn đi qua 3 điểm A,E,H.a) xác định vị trí tương đối của (I) và (O) ;b) AB cắt (I) tại F.c/m : C,H,F thẳng hàng
ai giúp em với ạ 5h em đi học thêm rồi !
-cho tam giác ABC vuông tại A, đường cao AH . Vẽ đường tròn (O), (I) ,(K) có các đường kính lần lượt là BC, CH, BH
a)Hãy xác định vị trí tương đối của (I),(O) và (K)
b) AC cắt đường tròn (I) tại D , AB cắt đường tròn (K) tại E. Chứng minh DE là tiếp tuyến chung của hai đường tròn (I) vả (K)
c)Xác định vị trí của H ở trên đường kính BC sao cho ED có độ dài lớn nhất
d)Tam giác ABC phải có thêm điều kiện gì để HB + HC + 2DE
cho tam giác ABC vuông tại A .Vẽ đường tròn (I) đi qua A và tiếp xúc với BC tại B vẽ đường tròn (K) đi qua A và tiếp xúc với BC tại C.
a) đường tròn (I) và đường tròn (K) có vị trí đối với nhau như thế nào
b) gọi M là trung điểm của BC .cm rằng MA là tiếp tuyến chung của 2 đường tròn (I) và (K)
giúp mk với mk đang cần gấp . cảm ơn
Lời giải:
a)
Dễ thấy \(IA=IB=R(I); KA=KB=R(K)\) nên tam giác \(IAB; KAC\) là tam giác cân.
Áp dụng tính chất tam giác cân và tính chất tiếp tuyến: \(\widehat{IAB}=\widehat{IBA}=\widehat{IBC}-\widehat{ABC}=90^0-\widehat{ABC}\)
\(\widehat{KAC}=\widehat{KCA}=\widehat{KCB}-\widehat{ACB}=90^0-\widehat{ACB}\)
\(\Rightarrow \widehat{IAB}+\widehat{KAC}=180^0-(\widehat{ABC}+\widehat{ACB})\)
\(\Leftrightarrow \widehat{IAB}+\widehat{KAC}=180^0-90^0=90^0\)
\(\Leftrightarrow \widehat{IAK}=90^0+\widehat{BAC}=90^0+90^0=180^0\)
\(\Rightarrow I,A,K\) thẳng hàng.
Hai đường tròn (I); (K) giao nhau tại A và I,A,K thẳng hàng nên IA+AK=IK nên (I) và (K) tiếp xúc với nhau tại A.
b)
Tam giác BAC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền nên \(AM=\frac{BC}{2}=BM\Rightarrow \triangle MAB\) cân tại M
\(\Rightarrow \widehat{MAB}=\widehat{MBA}=\widehat{CBA}=90^0-\widehat{IBA}=90^0-\widehat{IAB}\)
\(\Rightarrow \widehat{IAM}=\widehat{MAB}+\widehat{IAB}=90^0\Rightarrow IA\perp AM\) nên AM là tiếp tuyến của (I)
Hoàn toàn tương tự ta có AM là tiếp tuyến của (K)
Ta có đpcm.
Cho tam giác ABC vuông tại A và điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N, AN cắt đường tròn (O) tại D. Lấy I đối xứng với M qua A, K đối xứng với M qua E
a, Chứng minh BANC là tứ giác nội tiếp
b, Chứng minh CA là phân giác của B C D ^
c, Chứng minh ABED là hình thang
d, Tìm vị trí M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất
a, Học sinh tự chứng minh
b, Học sinh tự chứng minh
c, Học sinh tự chứng minh
d, Chú ý: B I A ^ = B M A ^ , B M C ^ = B K C ^
=> Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp DBIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC
Dấu "=" xảy ra <=> B I C ^ = 90 0 => I ≡ A => MA
Cho tam giác ABC vuông tại A. Điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N. Nối AN cắt đường tròn (O) tại D. Lấy I đối xứng với M qua A; lấy K đối xứng với M qua E. 1. Chứng minh BANC là tứ giác nội tiếp; 2. Chứng minh CA là phân giác của góc BCD; 3. Tìm M để tứ giác MBCK là hình thoi; 4. Tìm vị trí của M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất.
Cho tam giác ABC vuông tại A, M là điểm tùy ý trên đoạn AC (M khác A, C). Vẽ đường tròn tâm O đường kính MC cắt BC tại E. BM cắt (O) tại N, AN cắt (O) tại D. Lấy I đối xứng với M qua A. Lấy K đối xứng với M qua E.
1) Chứng minh CA là phân giác BCD
2) Tìm vị trí của M trên AC để MBKC là hình thoi
3) Tìm vị trí của M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất