PB

Cho tam giác ABC vuông tại A và điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N, AN cắt đường tròn (O) tại D. Lấy I đối xứng với M qua A, K đối xứng với M qua E

a, Chứng minh BANC là tứ giác nội tiếp

b, Chứng minh CA là phân giác của  B C D ^

c, Chứng minh ABED là hình thang

d, Tìm vị trí M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất 

CT
5 tháng 10 2019 lúc 7:16

a, Học sinh tự chứng minh

b, Học sinh tự chứng minh

c, Học sinh tự chứng minh

d, Chú ý:  B I A ^ = B M A ^ , B M C ^ = B K C ^

=> Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp  DBIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC

Dấu "=" xảy ra <=>  B I C ^ = 90 0 => I ≡ A => MA

Bình luận (0)