Những câu hỏi liên quan
PA
Xem chi tiết
EC
1 tháng 10 2019 lúc 14:45

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

Bình luận (0)
EC
1 tháng 10 2019 lúc 14:49

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...

Bình luận (0)
N6
Xem chi tiết
H24
Xem chi tiết
RH
4 tháng 9 2021 lúc 11:54

Biến đổi tương đương nhé bạn.

Bình luận (0)
NT
4 tháng 9 2021 lúc 12:52

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

Bình luận (0)
LT
Xem chi tiết
LT
Xem chi tiết
NL
26 tháng 11 2017 lúc 20:09

bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc

Bình luận (1)
NN
29 tháng 11 2017 lúc 19:38

1) \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^3-x^3y^2+y^2z^3-y^3z^2-z^2x^2\left(z-x\right)\)

\(=\left(y^2z^3-x^3y^2\right)-\left(y^3z^2-x^2y^3\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(z^3-x^3\right)-y^3\left(z^2-x^2\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(z^2+zx+x^2\right)-y^3\left(z-x\right)\left(z+x\right)-z^2x^2\left(z-x\right)\)

\(=\left(z-x\right)\left[y^2\left(z^2+zx+x^2\right)-y^3\left(z+x\right)-z^2x^2\right]\)

\(=\left(z-x\right)\left[\left(y^2z^2+xy^2z+x^2y^2\right)-\left(y^3z+xy^3\right)-z^2x^2\right]\)

\(=\left(z-x\right)\left(y^2z^2+xy^2z+x^2y^2-y^3z-xy^3-z^2x^2\right)\)

\(=\left(z-x\right)\left[\left(y^2z^2-y^3z\right)-\left(x^2z^2-x^2y^2\right)+\left(xy^2z-xy^3\right)\right]\)

\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z^2-y^2\right)+xy^2\left(z-y\right)\right]\)

\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z-y\right)\left(z+y\right)+xy^2\left(z-y\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[y^2z-x^2\left(z+y\right)+xy^2\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y^2z-x^2z-x^2y+xy^2\right)\)

\(=\left(z-x\right)\left(z-y\right)\left[\left(y^2z-x^2z\right)-\left(x^2y-xy^2\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[z\left(y^2-x^2\right)-xy\left(x-y\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[z\left(y-x\right)\left(y+x\right)+xy\left(y-x\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left[z\left(y+x\right)+xy\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left(yz+xz+xy\right)\)

Bình luận (0)
NN
29 tháng 11 2017 lúc 20:03

2) \(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)

\(=xyz-xy-yz-xz+x+y+z-1\)

\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(xz-x\right)+\left(z-1\right)\)

\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)

\(=\left(z-1\right)\left(xy-y-x+1\right)\)

\(=\left(z-1\right)\left[\left(xy-y\right)-\left(x-1\right)\right]\)

\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)

Bình luận (0)
NA
Xem chi tiết
HT
Xem chi tiết
BT
25 tháng 9 2023 lúc 19:41

Th1: 2x+3 ≥ 0
Khi đó: |2x+3| =x+2
 (2x+3)= x+2
- 2x+3= x+2
-2x-x= 2-3
 x= -1
Th2: 2x+3 < 0
Khi đó: |2x+3|=x+2
 -(2x+3) = x +2
 -2x-3 = x+2
 -3x = 5
 x=-5/3

Vậy x= -1

      x= -5/3

Lớp 6 cugx học dạng v nè

Bình luận (2)
VT
25 tháng 9 2023 lúc 19:58

`x/2=y/3 <=> x/8=y/12;

`y/4=z/5 <=> y/12=z/15.`

`<=> x/8=y/12=z/15=(x^2-y^2)/(64-144)=16/80=1/5`.

`@ x/8=1/5 <=> x= 8/5`.

`@ y/12=1/5 <=> y=12/5`.

`@ z/15=1/5 <=> y=15/5`.

Vậy...

 

Bình luận (0)
AH
25 tháng 9 2023 lúc 19:58

Lời giải:

a. Đặt $\frac{x}{2}=\frac{y}{3}=a\Rightarrow x=2a; y=3a$

$x^2-y^2=(2a)^2-(3a)^2=-16$

$\Rightarrow -5a^2=-16\Rightarrow a=\pm \frac{4}{\sqrt{5}}$

Nếu $a=\frac{-4}{\sqrt{5}}$ thì:

$x=2a=\frac{-8}{\sqrt{5}}; y=3a=\frac{-12}{\sqrt{5}}; z=\frac{5}{4}y=-3\sqrt{5}$

Nếu $a=\frac{4}{\sqrt{5}}$ thì:

$x=2a=\frac{8}{\sqrt{5}}; y=3a=\frac{12}{\sqrt{5}}; z=\frac{5}{4}y=3\sqrt{5}$

b.

Nếu $x\geq \frac{-3}{2}$ thì:

$2x+3=x+2$

$\Leftrightarrow x=-1$

Nếu $x< \frac{-3}{2}$ thì:

$-2x-3=x+2$

$\Leftrightarrow -5=3x\Leftrightarrow x=\frac{-5}{3}$

Thử lại thấy 2 giá trị $-1, \frac{-5}{3}$ đều tm

c.

$f(x)=-3x+6=0$

$\Leftrightarrow -3x=-6\Leftrightarrow x=2$

Vậy $x=2$ là nghiệm của đa thức.

Bình luận (0)
PL
Xem chi tiết
NL
19 tháng 6 2020 lúc 17:05

Đặt \(\left(\frac{yz}{x};\frac{zx}{y};\frac{xy}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=x^2+y^2+z^2=3\)

Ta có:

\(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=\sqrt{9}=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=1\)

Bình luận (0)
H24
Xem chi tiết
NL
28 tháng 12 2020 lúc 17:07

Không nhìn thấy bất cứ chữ nào của đề bài cả 

Bình luận (0)