Cho a/b = c/d . CMR a^2 - b^2 / c^2 - d^2 = a.b / c.d
cho a/b=c/d khac 1 va c khac 0
CMR:
a)((a.b)/(c.d))^2=(a.b)/(c-d)
b)((a.b/c.d))^3=((a^3-b^3)/(a^3-d^3))
cho a/b = c/d
CMR
a, a^2-b^2/a.b = c^2-d^2/c.d
b, (a+b)^2/ a^2 + b^2= (c+d)^2/c^2+d^2
Cho tỉ lệ thức: (a^2+b^2) / (c^2+d^2) = a.b / c.d
CMR: a / b = c / d
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=\left(c^2+d^2\right)ab\)
\(\Leftrightarrow a^2cd-c^2ab-d^2ab+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\begin{cases}ac=bd\\ad=bc\end{cases}\)
\(\Leftrightarrow\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}\)
Cho a/b=c/d cm rằng a)a/a-b=c/c-d
b) a/b=a+c/b+d
c) a/3a+b=c/3c+d
d)a.b/bd=a^2+c^2/b^2+d^2
E) a.b/c.d=a^2-b^2/c^2-d^2
F) a.b/c.d=(a-b)^2/(c-d)^2
1/ cho a,b,c,d khác 0 sao cho a2+b2=c2+d2. CMR: a+b+c+d là hợp số
2/ cho a,b,c,d khác 0 sao cho a.b=c.d. CMR: a+b+c+d là hợp số
\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}.Cmr:\frac{a}{b}=\frac{c}{d}\)
Cho \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\Rightarrow\hept{\begin{cases}a^2=b^2k^2\\c^2=d^2k^2\end{cases}}}\)
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
Lại có: \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)
Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}\left(ĐPCM\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
<=> a2cd + b2cd = abc2 + abd2
<=> a2cd - abd2 = abc2 - b2cd
<=> ad(ac - bd) = bc(ac - bd)
<=> ad = bc
<=> \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(a^2cd+b^2cd=abc^2+abd^2\)
\(a^2cd-abd^2=abc^2-b^2cd\)
\(ad\left(ac-bd\right)=bc\left(ac-bd\right)\)
\(ad=bc\)
\(\frac{a}{b}=\frac{c}{d}\)
B1:
Cho a/b = c/d CMR:
a) 2a + 3b/ 2a - 3b = 2c + 3d/ 2c - 3d
b)a.b/c.d = a^2 - b^2/ c^2 - d^2
c)(a +b / c+d)^2 = a^2 +b^2/c^2 + d^2
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR \(\dfrac{a.b}{c.d}=\dfrac{a^2-b^2}{c^2-d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
cho a:b=c:d
cmr: a) (a.b):(c.d)=(a2+b2) : (c2+d2)
Viet lai de bai
Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR:\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
Bai lam:
Dat \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta co:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
\(\frac{ab}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)