Những câu hỏi liên quan
KT
Xem chi tiết
TL
Xem chi tiết
FF
6 tháng 8 2016 lúc 10:07

Câu 1: 

(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n... 
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6. 
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm) 

Câu 2: Gọi biểu thức trên là a ta có:

 A=mn(m²-n²) 
   = mn(m² - 1 - n² + 1) 
   = mn [(m-1)(m+1) - (n-1)(n+1)] 
   = n(m-1)m(m+1) - m(n-1)n(n+1) 
{n(m-1)m(m+1) chia hết cho 3  (tính 3 số tự nhiên liên tiếp) 
{m(n-1)n(n+1) chia hết cho 3    (tính 3 số tự nhiên liên tiếp) 
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3 
=> A chia hết cho 3 

Câu 3:

 n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n 
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6

Vậy n(n+1)(2n+1) chia hết cho 6

Câu 4: Gọi biểu thức trên là B ta có:

* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1) 
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5 
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5 
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5  và n^2(n^2 - 1).5 cũng chia hết cho 5 
=> B chia hết cho 5 

*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3 
=> B chia hết cho 3 

*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1) 
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4 
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4 
=> B chia hết cho 4 

Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60

Câu 5: Gọi biểu thức trên là C ta có:

Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2) 
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2. 
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2. 
Vậy C chia hết cho 2 
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3. 
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3 
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3. 
Vậy C chia hết cho 3. 
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5 
Nếu k0 +)m,n đồng dư mod 5 =>m-n  chia hết cho 5 
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4) 
Các trường hợp (1,4),(2,3) =>m+n  chia hết cho5 
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại) 
Vậy C chia hết cho 5. 
Từ kết quả trên => C chia hết cho 30( đpcm). 

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

Bình luận (0)
QN
Xem chi tiết
ST
12 tháng 6 2018 lúc 10:09

1, \(n^5+19n=n^5-n+20n=n\left(n^4-1\right)+20n\)

\(=n\left(n^2-1\right)\left(n^2+1\right)+20n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)+20n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+2\right)+20n\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n\)

Vì (n-2)(n-1)n(n+1)(n+2) là hs 5 số tự nhiên liên tiếp nên \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)

Mà \(5n\left(n-1\right)\left(n+1\right)⋮5;20n⋮5\)

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n⋮5\) hay \(n^5+19n⋮5\)

2/ \(a^3-a+24=a\left(a^2-1\right)+24=\left(a-1\right)a\left(a+1\right)+24\)

Vì (a-1)a(a+1) là tích 3 số liên tiếp nên (a-1)a(a+1) chia hết cho 2 và 3 => (a-1)a(a+1) chia hết cho 6 

Mà 24 chia hết cho 6

=> (a-1)a(a+1)+24 chia hết cho 6 hay a^3-a+24 chia hết cho

3/  giống bài 2 

4/ Vì a^3-a chia hết cho 6 (cm b2), 12(a^2+1) chia hết cho 6 => a^3-a+12(a^2+1) chia hết cho 6

Bình luận (0)
TT
Xem chi tiết
NV
Xem chi tiết
TA
Xem chi tiết
LT
29 tháng 9 2017 lúc 17:10

Bài 2 :

A = 12 + 14 + 16 + x \(⋮\) 2

mà 12 \(⋮\) 2

14 \(⋮\) 2

16 \(⋮\) 2

\(\Rightarrow\) ( 12 + 14 + 16 ) \(⋮\) 2

\(\Rightarrow\) x \(⋮\) 2

x = 2k ( k \(\in\) N )

A = 12 + 14 + 16 + x \(⋮̸\) 2

mà 12 \(⋮\) 2

14 \(⋮\) 2

16 \(⋮\) 2

\(\Rightarrow\) x \(⋮̸\) 2

x = 2k + r ( k \(\in\) N , r \(\in\) N* )

Bài 3 : Cách làm tương tự như bài 2

Bình luận (0)
VV
Xem chi tiết
H24
25 tháng 2 2020 lúc 10:48

Đây là bài làm của mình. Sai sót gì mong bạn thông cảm.

a) Gọi 3 số tự nhiên liên tiếp là : a (a-1) (a+1)

Tích 3 STN liên tiếp luôn có một số chẵn và một số chia hết cho 3. 

=> a ( a-1) (a +1) \(⋮\)2; 3 

=> a (a-1) (a+1 ) \(⋮\)6

Vậy tích 3 STN liên tiếp chia hết cho 6 (lớp 8 có bài này).

b) Gọi tổng 3 sô tự nhiên liên tiếp là b + (b +1) + (b +2)

                                                         = b + b + 1 + b +2

                                                          = 3b + 3

Vì 3b \(⋮\)3 => 3b + 3 \(⋮\)3

Do đó b + (b+1) + (b+2) chia hết cho 3.

Vậy tổng 3 STN liên tiếp chia hết cho 3.

Bình luận (0)
 Khách vãng lai đã xóa