Những câu hỏi liên quan
TM
Xem chi tiết
H24
25 tháng 1 2015 lúc 8:09

a) x+(x+1)+(x+2)+(x+3)+...+2003=2003

    x+(x+1)+(x+2)+(x+3)+...+2003=2003

     X+(x+1)+(x+2)+(x+3)+...+2002=0

(    Vì ta thấy đây là tổng của một dãy số các số hạng liên tiếp nên day tren co so cuoi la 2002 va tong tat ca bang 0 vi 2003-2003=0 ma)

Goi so so hang cua day so tren la n(nkhac 0)

Suy ra ta co ((2002+x).n):2=0

                    suy ra (2002+x).n=0

                      Mà n khác 0

                       Suy ra 2002+x=0

                                          x=0-2002

                                             x=-2002

                                Vay x=-2002 

        Cậu b bạn làm tương tự nhé!

Neu to co lam sai thi ban thong cam nhe!

 

 

Bình luận (0)
TP
Xem chi tiết
H24
30 tháng 11 2015 lúc 19:53

cho 1 tick, mình giải chi tiết cho, mình học dạng này rồi, dẽ cực lun, có gì lien hệ nah

Bình luận (0)
TP
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
BC
Xem chi tiết
PH
10 tháng 9 2017 lúc 17:09

\(\dfrac{xy+xz+yz}{xyz}=\dfrac{1}{x+y+z}\)

\(\left(xy+xz+yz\right)\left(x+y+z\right)=xyz\)

\(x^2y+xy^2+xyz+x^2z+xyz+xz^2+xyz+y^2z+z^2y=xyz\)

\(x^2\left(y+z\right)+xy\left(y+z\right)+xz\left(z+y\right)+yz\left(y+z\right)=0\)

\(\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]=0\)

\(\left(y+z\right)\left(x+z\right)\left(x+y\right)=0\)

\(\left[{}\begin{matrix}x=-y\\z=-x\\y=-z\end{matrix}\right.\)

\(\dfrac{1}{x^{2003}}+\dfrac{1}{y^{2003}}+\dfrac{1}{z^{2003}}=\dfrac{1}{z^{2003}}=\dfrac{1}{x^{2003}+y^{2003}+z^{2003}}\)

Bình luận (0)
HD
Xem chi tiết
BC
Xem chi tiết
AH
7 tháng 1 2019 lúc 16:37

Lời giải:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)

\(\Leftrightarrow (x+y)\left(\frac{1}{xy}+\frac{1}{z(x+y+z)}\right)=0\)

\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)

\(\Leftrightarrow (x+y).\frac{z(y+z)+x(z+y)}{xyz(x+y+z)}=0\)

\(\Leftrightarrow \frac{(x+y)(z+x)(z+y)}{xyz(x+y+z)}=0\Rightarrow (x+y)(y+z)(x+z)=0\)

\(\Rightarrow \left[\begin{matrix} x=-y\\ y=-z\\ z=-x\end{matrix}\right.\)

Không mất tổng quát, giả sử \(x=-y\):

\(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{(-y)^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)

\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{(-y)^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)

Do đó: \(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\) (đpcm)

Bình luận (0)
TA
Xem chi tiết
NL
21 tháng 3 2019 lúc 12:22

\(x;y;z\ne0\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\\xy=-z\left(x+y+z\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\xy+xz+yz+z^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\\left(x+z\right)\left(y+z\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

- Với \(x=-y\Rightarrow\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{-y^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)

\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{-y^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)

\(\Rightarrow\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\)

2 trường hợp còn lại tương tự

Bình luận (0)