Phép nhân và phép chia các đa thức

BC

C/m nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì \(\dfrac{1}{x^{2003}}+\dfrac{1}{y^{2003}}+\dfrac{1}{z^{2003}}=\dfrac{1}{x^{2003}+y^{2003}+^{2003}}\)

PH
10 tháng 9 2017 lúc 17:09

\(\dfrac{xy+xz+yz}{xyz}=\dfrac{1}{x+y+z}\)

\(\left(xy+xz+yz\right)\left(x+y+z\right)=xyz\)

\(x^2y+xy^2+xyz+x^2z+xyz+xz^2+xyz+y^2z+z^2y=xyz\)

\(x^2\left(y+z\right)+xy\left(y+z\right)+xz\left(z+y\right)+yz\left(y+z\right)=0\)

\(\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]=0\)

\(\left(y+z\right)\left(x+z\right)\left(x+y\right)=0\)

\(\left[{}\begin{matrix}x=-y\\z=-x\\y=-z\end{matrix}\right.\)

\(\dfrac{1}{x^{2003}}+\dfrac{1}{y^{2003}}+\dfrac{1}{z^{2003}}=\dfrac{1}{z^{2003}}=\dfrac{1}{x^{2003}+y^{2003}+z^{2003}}\)

Bình luận (0)

Các câu hỏi tương tự
HC
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
VQ
Xem chi tiết
VQ
Xem chi tiết
TN
Xem chi tiết
YC
Xem chi tiết
LA
Xem chi tiết
HT
Xem chi tiết