Những câu hỏi liên quan
CT
Xem chi tiết
TT
Xem chi tiết
TB
Xem chi tiết
NT
19 tháng 8 2021 lúc 0:55

\(\dfrac{4x^2\left(y+z\right)^5}{2x\left(y+z\right)^3}=2x\left(y+z\right)^2\)

Bình luận (0)
AQ
Xem chi tiết
NT
11 tháng 10 2021 lúc 21:11

e: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{3}{y}=3\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=-2\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\\dfrac{1}{x}=1+\dfrac{2}{7}=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\x=\dfrac{7}{9}\end{matrix}\right.\)

Bình luận (0)
LT
Xem chi tiết
H24
13 tháng 3 2021 lúc 7:27

\(C=5x^3y^2-4x^3y^2+3x^2y^3+\dfrac{1}{2}x^2y^3+\dfrac{1}{3}x^4y^5-3x^4y^5-\dfrac{1}{7}\)

    \(=x^3y^2+\dfrac{7}{2}x^2y^3-\dfrac{8}{3}x^4y^5-\dfrac{1}{7}\)

Bình luận (0)
H24
22 tháng 8 2023 lúc 17:37

gg

 

Bình luận (0)
LN
Xem chi tiết
TL
Xem chi tiết
NT
21 tháng 2 2021 lúc 21:31

1) Ta có: \(\dfrac{1}{7}x^2y^3\cdot\left(-\dfrac{14}{3}xy^2\right)\cdot\left(-\dfrac{1}{2}xy\right)\left(x^2y^4\right)\)

\(=\left(-\dfrac{1}{7}\cdot\dfrac{14}{3}\cdot\dfrac{-1}{2}\right)\left(x^2y^3\cdot xy^2\cdot xy\cdot x^2y^4\right)\)

\(=\dfrac{1}{3}x^6y^{10}\)

2) Ta có: \(\left(3xy\right)^2\cdot\left(-\dfrac{1}{2}x^3y^2\right)\)

\(=9xy^2\cdot\dfrac{-1}{2}x^3y^2\)

\(=-\dfrac{9}{2}x^4y^4\)

3) Ta có: \(\left(-\dfrac{1}{4}x^2y\right)^2\cdot\left(\dfrac{2}{3}xy^4\right)^3\)

\(=\dfrac{1}{16}x^4y^2\cdot\dfrac{8}{27}x^3y^{12}\)

\(=\dfrac{1}{54}x^7y^{14}\)

Bình luận (0)
NN
Xem chi tiết
ND
26 tháng 6 2023 lúc 20:04

Bài 1 :

Cách 1 : Dùng hằng đẳng thức : \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

Áp dụng hằng đẳng thức trên ta suy ra được : đpcm.

Cách 2 :

\(VT=\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1\)

\(=x^3-1\left(VP\right)\)

suy ra : đpcm.

Bài 2 :

Hình như sai đề rồi á bạn . Đáp án đúng phải là \(x^4-y^4\) á cậu.

Cách 1 : Ta biến đổi vế phải thành vế trái .

Ta có : \(VP=x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)\)

\(=\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\left(VT\right)\)

Suy ra : đpcm.

Cách 2 : Bạn cũng có thể dùng hằng đẳng thức hoặc nhân bung vế trái ra á.

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 7 2023 lúc 11:08

\(2x^2y^3+5y^2x^3+\left(-\dfrac{1}{2}x^3y^2\right)+\left(-\dfrac{1}{2}x^2y^3\right)\\ =\left[2x^2y^3+\left(-\dfrac{1}{2}x^2y^3\right)\right]+\left[5x^3y^2+\left(-\dfrac{1}{2}x^3y^2\right)\right]\\ =\dfrac{3}{2}x^2y^3+\dfrac{9}{2}x^3y^2\)

Bình luận (0)
TT
Xem chi tiết