Những câu hỏi liên quan
NQ
Xem chi tiết
NT
16 tháng 9 2023 lúc 11:41

a) \(A=\left\{x\in R|x-\sqrt[]{3-2x}=0\right\}\)

\(B=\left\{x\in R|x^2+2x-3=0\right\}\)

\(\)\(x-\sqrt[]{3-2x}=0\)

\(\Leftrightarrow\sqrt[]{3-2x}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3-2x=x^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=1\)

\(\Rightarrow A=\left\{1\right\}\)

\(x^2+2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

\(\Rightarrow B=\left\{-3;1\right\}\)

Vậy \(A\subset B\)

 

Bình luận (0)
NT
16 tháng 9 2023 lúc 12:07

b) \(A=\left\{x\in N|x^2-2x+1>10\right\}\)

\(B=\left\{x\in N|x>=2\right\}\)

\(x^2-2x+1>10\)

\(\Leftrightarrow\left(x-1\right)^2>\left(\sqrt[]{10}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< -\sqrt[]{10}\\x-1>\sqrt[]{10}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< 1-\sqrt[]{10}\\x>1+\sqrt[]{10}\end{matrix}\right.\)

\(\Rightarrow A=(-\infty;1-\sqrt[]{10})\cup(1+\sqrt[]{10};+\infty)\)

\(B=[2;+\infty)\)

mà \(1-\sqrt[]{10}< 2< 1+\sqrt[]{10}\)

Vậy 2 tập hợp không có quan hệ gì giữa nhau

Bình luận (0)
NQ
Xem chi tiết
NT
15 tháng 9 2023 lúc 20:45

loading...  

Bình luận (1)
TH
Xem chi tiết
NT
20 tháng 8 2016 lúc 20:14

c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)


 

Bình luận (0)
KN
Xem chi tiết
LG
18 tháng 6 2019 lúc 18:10

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3

Bình luận (0)
NQ
Xem chi tiết
NT
14 tháng 9 2023 lúc 21:49

a) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}< 1\rightarrow Sai\)

vì \(\dfrac{2x}{x+1}< 1\Leftrightarrow\dfrac{x-1}{x+1}< 0\Leftrightarrow x< 1\left(mâu.thuẫn.x>1\right)\)

b) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}>1\rightarrowĐúng\)

Vì \(\dfrac{2x}{x+1}>1\Leftrightarrow\dfrac{x-1}{x+1}>0\Leftrightarrow x>1\left(đúng.đk\right)\)

c) \(\forall x\in N,x^2⋮6\Rightarrow x⋮6\rightarrowđúng\)

\(\forall x\in N,x^2⋮9\Rightarrow x⋮9\rightarrowđúng\)

 

Bình luận (0)
NQ
Xem chi tiết
NT
14 tháng 9 2023 lúc 21:03

Bạn ghi lại đề đi bạn

Bình luận (0)
H24
Xem chi tiết
NL
8 tháng 1 2024 lúc 18:20

GIới hạn đã cho hữu hạn

\(\Rightarrow\sqrt[3]{13x^2+2x+5}-\sqrt[3]{81x^2+ax+1}=0\) có nghiệm \(x=-1\)

\(\Rightarrow a=18\)

Khi đó:

\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{13x^2+2x+5}-\sqrt[3]{81x^2+18x+1}}{\left(x+1\right)^2}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(\sqrt[]{13x^2+2x+5}-\left(1-3x\right)\right)+\left(1-3x-\sqrt[3]{81x^3+18x+1}\right)}{\left(x+1\right)^2}\)

\(=...=\dfrac{17}{16}\)

Bình luận (0)
HP
Xem chi tiết
PD
Xem chi tiết
ND
Xem chi tiết
TM
10 tháng 7 2017 lúc 14:41

??????????????????

Thick thể hiện à

haizzzz

Bình luận (1)