Những câu hỏi liên quan
ZH
Xem chi tiết
NT
9 tháng 3 2022 lúc 23:39

a: Xét ΔABE và ΔADC có

AB/AD=AE/AC

góc A chung

Do đó:ΔABE\(\sim\)ΔADC

b: Ta có: ΔABE\(\sim\)ΔADC

nên AB/AD=BE/DC

hay \(AB\cdot DC=AD\cdot BE\)

Bình luận (0)
ZH
Xem chi tiết
HN
12 tháng 3 2022 lúc 16:01

Mình lấy của 1 bạn khácundefined

Bình luận (0)
ZH
Xem chi tiết
NA
9 tháng 4 2022 lúc 15:43

a) Xét 2 tam giác CKB và tam giác BAD có

Góc DAB = góc BKC = 90o

Góc ABD = góc CBD (BD là đường chéo hình chữ nhật ABCD => Tính chất)

=> Tam giác CKB đồng dạng với tam giác BAD

Bình luận (0)
ZH
Xem chi tiết
NT
29 tháng 7 2023 lúc 11:15

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 15^2+20^2=25cm

BH=AB^2/BC=15^2/25=9cm

c: Xét ΔBKH vuông tại K và ΔBAC vuông tại A có

góc B chung

=>ΔBKH đồng dạng với ΔBAC

=>S BKH/S BAC=(BH/BC)^2=(9/25)^2=81/625

=>S AKHC/S BAC=1-81/625=544/625

S ABC=1/2*AB*AC=1/2*15*20=150cm2

=>S AKHC=544/625*150=130,56cm2

Bình luận (0)
TH
Xem chi tiết
HP
3 tháng 9 2021 lúc 8:40

M là trung điểm AB, MK song song BC.

\(\Rightarrow\) MK đi qua trung điểm AI.

hay K là trung điểm AI.

Bình luận (0)
HN
Xem chi tiết
NT
2 tháng 10 2021 lúc 21:06

a: Xét ΔAHD có 

AP là đường cao ứng với cạnh HD

AP là đường trung tuyến ứng với cạnh HD

Do đó: ΔAHD cân tại A

mà AP là đường cao ứng với cạnh HD

nên AP là đường phân giác ứng với cạnh HD

Xét ΔAHE có 

AQ là đường cao ứng với cạnh HE

AQ là đường trung tuyến ứng với cạnh HE

Do đó: ΔHAE cân tại A

mà AQ là đường cao ứng với cạnh HE

nên AQ là đường phân giác ứng với cạnh HE

Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)

\(=2\left(\widehat{QAH}+\widehat{PAH}\right)\)

\(=2\cdot90^0=180^0\)

Do đó: E,A,D thẳng hàng

mà AD=AE(=AH)

nên A là trung điểm của DE

Bình luận (0)
NA
2 tháng 10 2021 lúc 21:13

a) Xét \(\Delta ADP\) = \(\Delta AHP\) có: ( cạnh huyền -cạnh góc vuông)

góc APD = APH=90o

AD = AH

AP chung                                               

=> AD=AH (1)

CMTT với \(\Delta AEQ=\Delta AHQ\left(CH-CGV\right)\)

=> AE= AH (2)

Từ 1 và 2 => AD= AE

=> A là trung điểm của DE

b) Xét \(\Delta DHE\) có:

DP=PH; HQ=QE

=> PQ là đg trung bình của tam giắc DHE

=> PQ// DE; PQ=1/2 DE

c) Xét tứ giác APHQ có: góc HPA= 90o; Góc A =90o; góc HQA=90o 

=> Tứ giác APHQ là HCN

=> PQ=AH ( theo t/c HCN)  

 

Bình luận (0)
H24
Xem chi tiết
HT
Xem chi tiết
NT
25 tháng 10 2023 lúc 20:10

a: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MB=MC=BC/2

Xét ΔMAB có MA=MB và \(\widehat{MBA}=60^0\)

nên ΔMAB đều

b: ΔBAM đều

mà BH là đường cao

nên H là trung điểm của AM

Xét ΔHNM vuông tại H và ΔHBA vuông tại H có

HM=HA

\(\widehat{HMN}=\widehat{HAB}\)(MN//AB)

Do đó: ΔHNM=ΔHBA

=>HN=HB

=>H là trung điểm của BN

Xét tứ giác ABMN có

H là trung điểm chung của AM và BN

BM=BA

Do đó: ABMN là hình thoi

c: ABMN là hình thoi

=>\(\widehat{NMB}=180^0-\widehat{MBA}=180^0-60^0=120^0\)

Xét ΔMNB có \(cosNMB=\dfrac{MN^2+MB^2-BN^2}{2\cdot MN\cdot MB}\)

\(\Leftrightarrow\dfrac{AB^2+AB^2-BN^2}{2\cdot AB\cdot AB}=-\dfrac{1}{2}\)

=>\(2AB^2-BN^2=-AB^2\)

=>\(BN^2=3AB^2\)

Xét ΔMAC có \(cosAMC=\dfrac{MA^2+MC^2-AC^2}{2\cdot MA\cdot MC}\)

=>\(\dfrac{AB^2+AB^2-AC^2}{2\cdot AB\cdot AB}=cos120=\dfrac{-1}{2}\)

=>\(2AB^2-AC^2=-AB^2\)

=>\(AC^2=3AB^2\)

=>\(AC^2=BN^2\)

=>AC=BN

Bình luận (0)
NK
Xem chi tiết