chứng minh rằng với số nguyên a thì
(a+1)^2 + a^2 + a^2(a+1)^2 là số chính phương
help me !!!!!!!
Cho số thực A = \(2+2\sqrt{28x^2+1}\) với x nguyên. Chứng minh rằng nếu A là số nguyên thì A là 1 số chính phương
tìm số nguyên ab [a>b>o] biết ab -ba là số chính phương
help me !!!!!!!!!!!!!
Ta có:
ab-ba=(10a+b)-(10b+a)=(10a-a)+(b-10b)=9a+(-9b)=9a-9b=9.(a-b)
Mà kết quả ab-ba là một số chính phương nên nó có dạng a mũ 2
Suy ra: 9. (a-b)=a mũ 2
=> 9.(a-b)=a.a
Mà tích 9.(a-b) đã có 1 thừa số là 9 nên (a-b) cũng bằng 9
Vì a;b là chữ số của 1 số nên 10>a>b>0
Vậy a;b không có giá trị vì không có hiệu nào đủ điều kiện trên.
1. Tìm các số nguyên x, y để :
x,(y-5) = -9
2. Chứng minh rằng với mọi số nguyên n thì :
a) A = (n+6).(n+7) luôn luôn chia hết cho 2
b) n2+n+2017 không chia hết cho 2
3. Cho a và b là hai số nguyên không chia hết cho 3 nhưng có cùng số dư khi chia cho 3. Chứng minh rằng hai số đó trừ 1 lại chia hết cho 3.
4. Cho A = 20+21+22+...+22017. Hỏi A có là số chính phương không? Vì sao ; A+1 có là số chính phương không?
cho dãy số a,a+1,a+2,...2a với a là số nguyên dương Chứng minh rằng trong dãy số đã cho có ít nhất một số là số chính phương
Chứng minh rằng với mọi a là số tự nhiên khác 0 thì số a(a+1)(a+2)(a+3) ko là số chính phương
Chứng minh rằng với mọi số nguyên a thì a mũ 2 + a - 1 phần a mũ 2 +a + 1 là phân số tối giản .
Gọi UCLN(a2+a-1;a2+a+1)=d
Ta có:a2+a-1 chia hết cho d
a2+a+1 chia hết cho d
=>(a2+a+1)-(a2+a-1) chia hết cho d
=>2 chia hết cho d
=>d\(\in\)Ư(2)={1,2}
Mà a2+a+1=a.(a+1)+1 là số lẻ nên không chia hết cho 2
Do đó d=1
Vậy \(\frac{a^2+a-1}{a^2+a+1}\) tối giản
1 . a) Chứng minh rằng số n2 +2014 với n nguyên dương không là số chính phương.
b) Cho a, b là các số dương thỏa mãn a3 + b3 = a5 + b5.
Chứng minh rằng: a2 + b2 ≤ 1 + ab
a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014
=> (k – n)(k + n) = 2014 (*)
Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (*) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Với 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
<=> a3 + b3 ≤ a + b
<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
<=> 2a3b3 ≤ ab5 + a5b
<=> ab(a4 – 2a2b2 + b4) ≥ 0
<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5
Cho hai số nguyên dương \(a;b\) với \(b>1\) và thỏa mãn điều kiện \(A=\dfrac{a^2}{2.a.b^2-b^3+1}\) là số nguyên dương. Chứng minh rằng \(A\) là số chính phương.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
\(\dfrac{a^2}{2ab^2-b^3+1}=m\in Z^+\Rightarrow a^2-2mb^2a.+mb^3-m=0\)
\(\Rightarrow\Delta=4m^2b^4-4mb^3+4m\) là SCP (1)
Ta dễ dàng chứng minh được:
\(4m^2b^4-4mb^3+4m>\left(2mb^2-b-1\right)^2\)
\(\Leftrightarrow4m\left(b^2+1\right)>\left(b+1\right)^2\)
Đúng do: \(2m.2\left(b^2+1\right)\ge2m\left(b+1\right)^2>\left(b+1\right)^2\)
Tương tự, ta cũng có: \(4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)
\(\Leftrightarrow\left(b-1\right)^2+4m\left(b^2-1\right)>0\) (luôn đúng với b>1;m>0)
\(\Rightarrow\left(2mb^2-b-1\right)^2< 4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)
\(\Rightarrow4m^2b^4-4mb^3+4m=\left(2mb^2-b\right)^2\)
\(\Rightarrow b^2=4m\)
\(\Rightarrow b\) chẵn \(\Rightarrow b=2k\Rightarrow m=k^2\)
Thế vào (1) \(\Rightarrow a^2-8k^4a+8k^5-k^2=0\)
\(\Leftrightarrow\left(a-k\right)\left(a-8k^4+k\right)=0\Rightarrow\left[{}\begin{matrix}a=k\\a=8k^4-k\end{matrix}\right.\)
Vậy nghiệm của pt là: \(\left(a;b\right)=\left(k;2k\right);\left(8k^4-k;2k\right)\) với k nguyên dương
1.
a) Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng tích (p-1)(p+1) chia hết cho 24
b) Cho p và p+4 là số nguyên tố(p>3). Chứng minh rằng p+8 là hợp số
2. Chứng minh với mọi n thuộc N thì: 8n+111...11(n chữ số) chia hết cho 9
3.
a) Chứng minh rằng khi bình phương của một số nguyên lẻ cho 8 ta luôn được số dư là 1
b) Chứng minh rằng nếu có 6 số nguyên a1;a2;a3;a4;a5;a6 thoả mãn điều kiện:
a12+a22+a32+a42+a52+a62 thì cả sáu số đó đều là số lẻ
Câu 3 phần b dấu + ở cuối là dấu = nha các bạn