Ôn thi vào 10

PO

 Cho hai số  nguyên dương  \(a;b\)  với  \(b>1\) và thỏa mãn điều kiện  \(A=\dfrac{a^2}{2.a.b^2-b^3+1}\) là  số nguyên dương. Chứng minh rằng  \(A\)    là số chính phương.
P/s:  Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em với ạ!
 Em cám ơn nhiều lắm ạ!

NL
15 tháng 4 2022 lúc 22:39

\(\dfrac{a^2}{2ab^2-b^3+1}=m\in Z^+\Rightarrow a^2-2mb^2a.+mb^3-m=0\)

\(\Rightarrow\Delta=4m^2b^4-4mb^3+4m\) là SCP (1)

Ta dễ dàng chứng minh được:

\(4m^2b^4-4mb^3+4m>\left(2mb^2-b-1\right)^2\)

\(\Leftrightarrow4m\left(b^2+1\right)>\left(b+1\right)^2\)

Đúng do: \(2m.2\left(b^2+1\right)\ge2m\left(b+1\right)^2>\left(b+1\right)^2\)

Tương tự, ta cũng có: \(4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)

\(\Leftrightarrow\left(b-1\right)^2+4m\left(b^2-1\right)>0\) (luôn đúng với b>1;m>0)

\(\Rightarrow\left(2mb^2-b-1\right)^2< 4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)

\(\Rightarrow4m^2b^4-4mb^3+4m=\left(2mb^2-b\right)^2\) 

\(\Rightarrow b^2=4m\)

\(\Rightarrow b\) chẵn \(\Rightarrow b=2k\Rightarrow m=k^2\)

Thế vào (1) \(\Rightarrow a^2-8k^4a+8k^5-k^2=0\)

\(\Leftrightarrow\left(a-k\right)\left(a-8k^4+k\right)=0\Rightarrow\left[{}\begin{matrix}a=k\\a=8k^4-k\end{matrix}\right.\)

Vậy nghiệm của pt là: \(\left(a;b\right)=\left(k;2k\right);\left(8k^4-k;2k\right)\) với k nguyên dương

Bình luận (1)

Các câu hỏi tương tự
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết