Những câu hỏi liên quan
PD
Xem chi tiết
NT
19 tháng 3 2022 lúc 19:41

chọn A

Bình luận (0)
VA
19 tháng 3 2022 lúc 19:43

A

Bình luận (0)
DT
19 tháng 3 2022 lúc 19:44

a

Bình luận (0)
TH
Xem chi tiết
NT
25 tháng 8 2015 lúc 21:55

\(\frac{a}{b}+\left(-\frac{a}{b}\right)+1=1\)

Bình luận (0)
TT
25 tháng 8 2015 lúc 21:57

= 1 

Bình luận (0)
TP
Xem chi tiết
H24
2 tháng 12 2023 lúc 21:23

Ta có: \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\) (1)

Lại có: \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\) 

\(=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-2\sqrt{5}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(=2\sqrt{5}+3-2\sqrt{5}\)

\(=3\)

\(\Rightarrow a=b+3\)

Thay \(a=b+3\) vào (1), ta được:

\(\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2024\)

\(=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2024\)

\(=b\left(b^2+6b+9\right)+4\left(b^2+6b+9\right)-b^3-10b^2-33b+2024\)

\(=b^3+6b^2+9b+4b^2+24b+36-b^3-10b^2-33b+2024\)

\(=\left(b^3-b^3\right)+\left(6b^2+4b^2-10b^2\right)+\left(9b+24b-33b\right)+\left(2024+36\right)\)

\(=2060\)

$\Rightarrow$ Chọn đáp án $C$.

Bình luận (0)
ND
2 tháng 12 2023 lúc 21:28

Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)

\(\Rightarrow a-b=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)

\(\Rightarrow a-b=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(\Rightarrow a-b=2\sqrt{5}+3-2\sqrt{5}\)

\(\Rightarrow a-b=3\)

Xét biểu thức : \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\)

\(=a^3+a^2-b^3+b^2-11ab+2024\)

\(=a^3-b^3+a^2+b^2-2ab-9ab+2024\)

\(=a^3-b^3-9ab+a^2-2ab+b^2+2024\)

\(=a^3-3ab\left(a-b\right)-b^3+\left(a-b\right)^2+2024\) vì \(a-b=3\)

\(=\left(a-b\right)^3+\left(a-b\right)^2+2024\)

\(=3^3+3^2+2024\)

\(=2060\)

\(\Rightarrow C\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 8 2023 lúc 20:00

\(log_65=\dfrac{1}{log_56}=\dfrac{1}{log_52+log_53}=\dfrac{1}{a+b}\)

=>Chọn B

Bình luận (0)
NN
Xem chi tiết
NT
5 tháng 1 2022 lúc 8:37

Câu 1: C

Câu 2: D

Câu 3: A

Câu 4: B

Bình luận (1)
NT
Xem chi tiết
NL
23 tháng 11 2021 lúc 23:33

\(\left\{{}\begin{matrix}a+8-c+d=0\\\dfrac{\left|a-8+2c+d\right|}{\sqrt{a^2+16+c^2}}=5\end{matrix}\right.\)

\(\Rightarrow\left(3c-16\right)^2=25\left(a^2+c^2+16\right)\)

\(\Rightarrow25a^2+16c^2+96c+144=0\)

\(\Rightarrow25a^2+16\left(c+3\right)^2=0\Rightarrow\left\{{}\begin{matrix}a=0\\c=-3\end{matrix}\right.\)

\(\Rightarrow d=c-a-8=-11\)

\(\Rightarrow a+c+d=-14\)

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 8 2018 lúc 17:01

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Chọn A

Bình luận (0)
US
Xem chi tiết
MM
27 tháng 7 2021 lúc 16:40

Bình luận (1)
UN
Xem chi tiết