Rút gọn: 12(52+1).(54+1).(58+1).(516+1)
Rút gọn biểu thức: P = 12.( 5 2 + 1)( 5 4 + 1)( 5 8 + 1)( 5 16 + 1)
Ta có:
( 5 2 - 1).P = ( 5 2 – 1).12.( 5 2 + 1)( 5 4 + 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 2 – 1).( 5 2 + 1)( 5 4 + 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 4 - 1)( 5 4 + 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 8 - 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 16 - 1)( 5 16 + 1)
= 12.( 5 32 - 1)
P=12(52+1)(54+1)(58+1)(516+1)
Ta có: \(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Rightarrow P=\dfrac{24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{5^{32}-1}{2}\)
C = 48.(52 + 1) (54 + 1) (58 + 1)(516 + 1)(532 + 1)(564 + 1)
E= (x - 2)3- (x + 1).(x2 - x + 1)+6.(x - 1)2
\(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\left(5^{128}-1\right)=2.5^{128}-2\)
c: Ta có: \(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^2-1\right)\left(5^2+1\right)\cdot\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{16}-1\right)\cdot\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{32}-1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{64}-1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{128}-1\right)\)
\(=2\cdot5^{128}-2\)
d: Ta có: \(E=\left(x-2\right)^3-\left(x+1\right)\left(x^2-x+1\right)+6\left(x-1\right)^2\)
\(=x^3-6x^2+12x-8-x^3-1+6x^2-12x+6\)
\(=-3\)
Bài 1/ rút gọn biểu thức
P = 12(52+1)(54+1)(58+1)(516+1)
bài 2/ C/M (a+b+c)= a3+b3+c3+3(a+b)(b+c)(c+a)
Bài 3/ cho a+b+c=0. C/M a3+b3+c3=3abc
Bài 4/ tìm x biết : x3+x=0
Bài 5/ Tìm giá trị nguyên của n để giá trị của biểu thức 3n3+10n2 - 5 chia hết cho giá trị của biểu thức 3n+1
Bài4:
=>x(x^2+1)=0
>x=0
Bài 5:
=>\(3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
giá trị rút gọn của A=\(\frac{18.123+9.4567.2+3.5310.6}{1+4+7+...+49+52+55+58-490}\)
tử số =18.123+9.4567.2+3.5310.6=18.123+18.4567+18.5310
=18(123+4567+5310)
=18.10000=180000
mẫu số = 1+4+7+....+49+52+55+58-490
=(1+58)+(4+55)+.....(28+31)-490
=59+59+59+...+59-490(10 so 59)
=100
suy ra A=180000:100=1800
Bài 1. Rút gọn
B = 1-7+72-73+...-799
D = 1/3 - 1/32 + 1/33 - 1/34 +...- 1/360
Bài 2. So sánh
A = 1+6+62+...+69 / 1+6+62+...+68
B = 1+5+52+...+59 / 1+5+52+...+58
Bài 1/ rút gọn biểu thức
P = 12(52+1)(54+1)(58+1)(516+1)
bài 2/ C/M (a+b+c)= a3+b3+c3+3(a+b)(b+c)(c+a)
Bài 3/ cho a+b+c=0. C/M a3+b3+c3=3abc
Bài 4/ tìm x biết : x3+x=0
Bài 5/ Tìm giá trị nguyên của n để giá trị của biểu thức 3n3+10n2 - 5 chia hết cho giá trị của biểu thức 3n+1
GIÚP MÌNH VỚI CHIỀU NAY MÌNH PHẢI NỘP RỒI!!!!!!!
Bài 4:
x^3+x=0
=>x(x^2+1)=0
=>x=0
Bài 5:
\(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2-1-4⋮3n+1\)
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
Rút gọn phân số sau: \(A=\frac{18\times123+9\times4567\times2+3\times5310\times6}{1+4+7+10+...+49+52+58-490}\)
gọi tử là B
vậy B = 18 x 123 + 9 x 4567 x 2 + 3 x 5310 x 6
=> B = 18 x 123 + 18 x 4567 + 18 x 5310
=> B = 18 x ( 123 + 4567 + 5310 )
=> B = 18 x 10000
=> B = 180000
gọi mẫu là C
vậy C = 1 + 4 + 7 + 10 + .....+ 49 + 52 + 58 - 490
gọi 1 + 4 + 7 + 10 + .....+ 49 + 52 là D
vậy số số hạng của D là : ( 52 - 1 ) : 3 + 1 = 18
D = ( 18 x 53 ) : 2 = 477
C = 477 + 58 - 490 = 45
A = \(\frac{180000}{45}\)
A = 4000
Giá trị rút gọn của \(A=\frac{18\cdot123+9\cdot4567\cdot2+3\cdot5310\cdot6}{1+4+7+10+...+49+52+55+58-490}\)là