Những câu hỏi liên quan
ML
Xem chi tiết
KZ
Xem chi tiết
NT
Xem chi tiết
H24
19 tháng 8 2016 lúc 10:05

Áp dụng bđt cosi ta được \(4x+\frac{1}{4x}\ge2\sqrt{4x.\frac{1}{4x}}=2\)
\(x+\frac{1}{4}\ge2\sqrt{\frac{1}{4}x}=\sqrt{x}\Leftrightarrow4x+1\ge4\sqrt{x}\Leftrightarrow4\left(x+1\right)\ge4\sqrt{x}+3\Leftrightarrow-\left(4\sqrt{x}+3\right)\ge-4\left(x+1\right)\Leftrightarrow-\frac{\left(4\sqrt{x}+3\right)}{x+1}\ge-4\)Khi đó \(A\ge2-4+2016=2014\)
Dấu = xảy ra khi x=1/4

Bình luận (0)
AO
Xem chi tiết
LD
23 tháng 3 2021 lúc 11:57

Áp dụng bất đẳng thức AM-GM ta có :

\(4x+\frac{1}{4x}\ge2\sqrt{4x\cdot\frac{1}{4x}}=2\)

=> \(A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016\)

=> \(A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014\)

=> \(A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014\)

hay \(A\ge2014\). Đẳng thức xảy ra <=> \(\hept{\begin{cases}4x=\frac{1}{4x}\\2\sqrt{x}-1=0\end{cases}}\Rightarrow x=\frac{1}{4}\)

Vậy GTNN của A = 2014 <=> x = 1/4

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NM
Xem chi tiết
NM
21 tháng 6 2019 lúc 20:55

\(1-\sqrt{2}x\) nha

Bình luận (0)
NL
21 tháng 6 2019 lúc 21:38

\(x=\frac{1}{2}\left(\sqrt{2}-1\right)\)

\(\Leftrightarrow2x=\sqrt{2}-1\Leftrightarrow4x^2=3-2\sqrt{2}=1-4.\frac{1}{2}\left(\sqrt{2}-1\right)=1-4x\)

\(\Leftrightarrow4x^2+4x-1=0\)

\(\left[x^3\left(4x^2+4x-1\right)+1\right]^{19}=1^{19}=1\)

\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1+4}^3=\sqrt{4}^3=8\)

\(\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}\left(4x^2+4x-1\right)+\frac{1}{2}}}=\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}}}=\sqrt{2}-2x=\sqrt{2}-\left(\sqrt{2}-1\right)=1\)

\(M=1+8+1=10\)

Bình luận (0)
HV
Xem chi tiết
NT
25 tháng 6 2023 lúc 12:03

a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)

Để P nguyên dương thì x-1 thuộc {1;4;2}

=>x thuộc {2;5;3}

b: x+y+z=0

=>x=-y-z; y=-x-z; z=-x-y

\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)

\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)

\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)

\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)

Bình luận (0)
NN
Xem chi tiết
H24
4 tháng 7 2020 lúc 19:16

1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy x=2 hoặc x=-1

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
NT
22 tháng 2 2022 lúc 11:21

\(x=\dfrac{1}{2}\cdot\sqrt{\left(\sqrt{2}-1\right)^2}=\dfrac{\sqrt{2}-1}{2}\)

\(A=\left[4\cdot\left(\dfrac{\sqrt{2}-1}{2}\right)^4+4\cdot\left(\dfrac{\sqrt{2}-1}{2}\right)^3-5\cdot\left(\dfrac{\sqrt{2}-1}{2}\right)^2+5\cdot\dfrac{\sqrt{2}-1}{2}-2\right]^{2015}+2016\)

=-1,13+2016=2014,87

Bình luận (0)