Chứng minh rằng :C+1/32+1/42+1/52+...+1/5200<1/2
Làm ơn giúp mình với chiều mình phải nộp rồi
chứng minh
1/22+1/32+1/42+1/52+...+1/1002 >3/4
Bài 2
a) 12+ 22 + 32 + 42+52 và (1+2+3+4+5)2
b) 13+ 23+33 +43 và (1+2+3+4)3
c) 16 . 5200 và 5202
d) 18 . 4500 và 21004
e) 2022 . 2023 2024 + 20232024 và 20232025
a: \(12+2^2+3^2+4^2+5^2\)
\(=12+4+9+16+25\)
\(=16+50=66\)
\(\left(1+2+3+4+5\right)^2=15^2=225\)
=>\(12+2^2+3^2+4^2+5^2< \left(1+2+3+4+5\right)^2\)
b: \(1^3+2^3+3^3+4^3=\left(1+2+3+4\right)^2< \left(1+2+3+4\right)^3\)
c: \(5^{202}=5^2\cdot5^{200}=25\cdot5^{200}>16\cdot5^{200}\)
d: \(18\cdot4^{500}=18\cdot2^{1000}\)
\(2^{1004}=2^4\cdot2^{1000}=16\cdot2^{1000}\)
=>\(18\cdot4^{500}>2^{1004}\)
e: \(2022\cdot2023^{2024}+2023^{2024}=2023^{2024}\left(2022+1\right)\)
\(=2023^{2025}\)
Chứng minh rằng
1/32 + 1/42 + 1/52 + ... + 1/102 < 1/2
Mình cần gấp các cậu giúp mình với ạ.Hứa tick đủ ạ
Ta có : \(\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}\) (8 số hạng)
\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}.8=\frac{1}{4}< \frac{1}{2}\)
\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{2}\left(đpcm\right)\)
\(A=\frac{1}{32}+\frac{1}{42}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}=\frac{8}{32}< \frac{16}{32}=\frac{1}{2}\)
Vậy \(A< \frac{1}{2}\)
Chứng tỏ rằng: B=1/22+1/32+1/42+1/52+1/62+1/72+1/82<1
Đặt B=122+132+...+182B=122+132+...+182A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8
=1−18<1(2)=1−18<1(2)
Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1
C=1+3+32+33+...+311 . Chứng minh rằng C ⋮ 40
D=1+4+42+43+...+458+459 . Chứng minh rằng D ⋮ 21
\(C=1+3+3^2+3^3+\cdot\cdot\cdot+3^{11}\)
\(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40+3^4\cdot40+3^8\cdot40\)
\(=40\cdot\left(1+3^4+3^8\right)\)
Vì \(40\cdot\left(1+3^4+3^8\right)⋮40\)
nên \(C⋮40\)
#\(Toru\)
\(C=1+3+3^2+3^3+...+3^{11}\)
\(\Rightarrow C=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(\Rightarrow C=40+3^4.40+3^8.40\)
\(\Rightarrow C=40\left(1+3^4+3^8\right)⋮40\)
\(\Rightarrow dpcm\)
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Giải:
a) Ta có:
1/22=1/2.2 < 1/1.2
1/32=1/3.3 < 1/2.3
1/42=1/4.4 < 1/3.4
1/52=1/5.5 < 1/4.5
1/62=1/6.6 < 1/5.6
1/72=1/7.7 < 1/6.7
1/82=1/8.8 <1/7.8
⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
B<1/1-1/8
B<7/8
mà 7/8<1
⇒B<7/8<1
⇒B<1
b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46
S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=45/46
Vì 45/46<1 nên S<1
Vậy S<1
Chúc bạn học tốt!
a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)
\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)
\(...\)
\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)
Vậy ta có biểu thức:
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)
Vậy B < 1 (đpcm)
BÀI 1: So sánh mà ko tính giá trị của biểu thức
a) 4 336 và 3 448
b) 5 300 và 3 750
Bài 2
a) 12+ 22 + 32 + 42+52 và (1+2+3+4+5)2
b) 13+ 23+33 +43 và (1+2+3+4)3
c) 16 . 5200 và 5202
d) 18 . 4500 và 21004
e) 2022 . 2023 2024 + 20232024 và 20232025
42:x=6
x= 42 :6
X= 7
TH 2
36:x = 6
X = 36: 6
X= 6
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
1,Chứng minh rằng:
1/2<1/51+1/52+...+1/100<1
2,Chứng minh 1/41+1/42+1/43+...+1/79+1/80>7/12
Bài 1:
Ta có: \(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
......
\(\frac{1}{99}>\frac{1}{100}\)
Công vế với vế lại ta được:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\) (1)
Lại có: \(\frac{1}{51}< \frac{1}{50}\)
\(\frac{1}{52}< \frac{1}{50}\)
.....
\(\frac{1}{100}< \frac{1}{50}\)
Cộng vế với vế lại ta được:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{50}{50}=1\) (2)
Từ (1)(2) => \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\) (đpcm)
Bài 2:
Đặt S = 1/41 + 1/42 +...+ 1/80
S có 40 số hạng,chia thành 4 nhóm,mỗi nhóm có 10 số hạng
Ta có:S = \(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\) + \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)+ \(\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)+ \(\left(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}\right)\)
=> S > \(\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)\)
=> S > \(\frac{10}{50}+\frac{10}{60}+\frac{10}{70}+\frac{10}{80}\)
=> S > \(\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)
Vậy \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{7}{12}\left(đpcm\right)\)
Chứng minh rằng: M = 1/22 + 1/32 + 1/42 + ... + 1/n2 < 1