căn(a/2a+b+c) + căn(b/2b+a+c) + căn(c/2c+a+b) =<3/2
căn bậc hai của a+2b+3c + căn bậc hai của b+2c+3a+ căn bậc hai của c+2a+3b lớn hơn hoặc bằng căn bậc hai của 6 nhân ( căn a + căn b + căn c)
Cho a,b,c >0 thoả mãn a+b+c=2
tìm GTLN của căn 2a+bc + căn 2b+ca + căn 2c+ab
cho ba số thực a,b,c thỏa mãn a+b+c =1. Tìm giá trị lớn nhất của biểu thức A= căn 2ab+2a + căn 2bc+2b+căn 2ca+2c
20=890=869=9986=8676=855=648
Cho a,b,c thực dương t.m: a+b+c=2
CMR: P = ab/căn ( ab+2c) + bc/căn( bc+2a) +ca/căn ( ca+2b)<=1
Ta có: a + b + c = 2 nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)
\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)\)\(=\left(b+c\right)\left(a+c\right)\)
Áp dụng BĐT Cô - si cho 2 số không âm:
\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\)(Vì a,b,c thực dương)
\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)
\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)(cmt)
\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\)(nhân 2 vế cho ab thực dương) (1)
(Dấu "="\(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\))
Tương tự ta có: \(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{b+a}+\frac{bc}{a+c}\right)\)(Dấu "="\(\Leftrightarrow b=c\)) (2)
\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)(Dấu "="\(\Leftrightarrow a=c\)) (3)
Cộng các BĐT (1) , (2) , (3), ta được:
\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)
\(\le\frac{1}{2}\left(a+b+c\right)=1\)
Vậy \(P=\frac{ab}{\sqrt{ab+2c}}\)\(+\frac{bc}{\sqrt{bc+2a}}\)\(+\frac{ca}{\sqrt{ca+2b}}\le1\)
(Dấu "="\(\Leftrightarrow a=b=c=\frac{2}{3}\))
Ta có:
\(\frac{ab}{\sqrt{ab+2c}}=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{ab}{c+a}+\frac{ab}{c+b}\)
Tương tự:
\(\frac{bc}{\sqrt{bc+2a}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)
\(\frac{ca}{\sqrt{ca+2b}}\le\frac{ca}{b+c}+\frac{ca}{b+a}\)
Khi đó:
\(P\le\frac{ab}{a+c}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{b+a}\)
\(=\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{b+a}\)
\(=a+b+c=2\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)
Á á lộn rồi:(
\(\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\) nha !!
\(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)
\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{b+c}+\frac{ca}{b+a}\right)\)
Khi đó:
cộng lại rồi làm tương tự
1. Tìm GTNN của A = x2 + 4 - x + 1: x2 - x + 1
2. Tìm GTLN của B= căn a+1+ căn 2a-3+ căn 50-3a với a thuộc 3:2, 50:3
3. Cho a lớn hơn bằng -1:2, b lớn hơn bằng -1;2, c lớn hơn bằng -1:2, a+b+c=1
Tìm GTLN của C =căn 2a +1+ căn 2b +1+ căn 2c +1
4. Cho x,y > 0. Tìm GTNN của D = x2: y bình+ y bình: x2 -3.<x:y+y:x> +4
cho các số thực không âm a,b,c thoat mãn căn( a + 2b + 1 ) + căn(a + 2c + 1 ) =4 . Tìm GTLN và GTNN của A = a + b + c + ca + bc + ac
cho các số thực không âm a,b,c thoat mãn căn( a + 2b + 1 ) + căn(a + 2c + 1 ) =4 . Tìm GTLN và GTNN của A = a + b + c + ca + bc + ac
trong mặt phẳng tọa độ oxy cho vecto u = (a;b) mệnh đề nào đúng?
A. | vecto u | = căn a^2- b^2
B. | vecto u | = a^2 + b^2
C. | vecto u | = căn a^2 + b^2
D. | vecto u | = căn 2 + b
cho a+b+c=5 a,b,c>0
tìm Min
P= căn(a+1) + căn(2b+1) + căn(3c+1)