Những câu hỏi liên quan
HL
Xem chi tiết
NA
Xem chi tiết
ND
Xem chi tiết
NB
19 tháng 5 2020 lúc 21:48

20=890=869=9986=8676=855=648

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
KN
5 tháng 12 2019 lúc 21:23

Ta có: a + b + c = 2 nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)

\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)\)\(=\left(b+c\right)\left(a+c\right)\)

Áp dụng BĐT Cô - si cho 2 số không âm:

\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\)(Vì a,b,c thực dương)

\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)(cmt)

\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\)(nhân 2 vế cho ab thực dương)    (1)

(Dấu "="\(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\))

Tương tự ta có: \(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{b+a}+\frac{bc}{a+c}\right)\)(Dấu "="\(\Leftrightarrow b=c\))  (2)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)(Dấu "="\(\Leftrightarrow a=c\))  (3)

Cộng các BĐT (1) , (2) , (3), ta được:

\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)

\(\le\frac{1}{2}\left(a+b+c\right)=1\)

Vậy \(P=\frac{ab}{\sqrt{ab+2c}}\)\(+\frac{bc}{\sqrt{bc+2a}}\)\(+\frac{ca}{\sqrt{ca+2b}}\le1\)

(Dấu "="\(\Leftrightarrow a=b=c=\frac{2}{3}\))

Bình luận (0)
 Khách vãng lai đã xóa
H24
5 tháng 12 2019 lúc 21:22

Ta có:

\(\frac{ab}{\sqrt{ab+2c}}=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{ab}{c+a}+\frac{ab}{c+b}\)

Tương tự:

\(\frac{bc}{\sqrt{bc+2a}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{ca}{b+c}+\frac{ca}{b+a}\)

Khi đó:

\(P\le\frac{ab}{a+c}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{b+a}\)

\(=\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{b+a}\)

\(=a+b+c=2\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
5 tháng 12 2019 lúc 21:24

Á á lộn rồi:(

\(\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\) nha !!

\(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{b+c}+\frac{ca}{b+a}\right)\)

Khi đó:

cộng lại rồi làm tương tự

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
TP
11 tháng 6 2019 lúc 13:26

1.undefined

Bình luận (0)
VT
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
NT
10 tháng 1 2022 lúc 8:12

Chọn C

Bình luận (0)
NN
Xem chi tiết