Những câu hỏi liên quan
NH
Xem chi tiết
NT
30 tháng 4 2022 lúc 22:12

#include <bits/stdc++.h>

using namespace std;

long long a[100],i,n,x,dem;

int main()

{

cin>>n;

for (i=1; i<=n; i++) cin>>a[i];

cin>>x;

dem=0;

for (i=1; i<=n; i++)

if (x==a[i]) dem++;

cout<<dem;

return 0;

}

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 19:02

a) \({x^2} = 4 = {2^2} = {\left( { - 2} \right)^2} \Leftrightarrow x =  \pm 2\)

b) \({x^3} =  - 8 = {\left( { - 2} \right)^3} \Leftrightarrow x =  - 2.\)

- Chú ý: 

Trong toán học, căn bậc chẵn của một số là một số lớn hơn 0. Do đó số âm không có căn bậc chẵn.

Bình luận (0)
TV
Xem chi tiết
H24
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 12 2019 lúc 12:03

Đáp án C

Ta có

Khi đó

Vậy giá trị nhỏ nhất của biểu thức P là  3 + 2 2

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 4 2019 lúc 17:07

Bình luận (0)
H24
Xem chi tiết
AH
10 tháng 8 2021 lúc 10:53

Bài 8:

\(M=1+\frac{4}{\sqrt{x}+1}\)

Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên 

Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương 

$\Rightarrow \sqrt{x}+1=\frac{4}{t}$

$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$

$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$

Mà $t$ nguyên dương suy ra $t=1;2;3;4$

Kéo theo $x=9; 1; \frac{1}{9}; 0$

Kết hợp đkxđ nên $x=0; \frac{1}{9};9$

Bình luận (0)
AH
10 tháng 8 2021 lúc 10:55

Bài 9:

$P=1+\frac{5}{\sqrt{x}+2}$

Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên 

Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$

$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$

$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$

Với $t>0\Rightarrow 5-2t\geq 0$

$\Leftrightarrow t\leq \frac{5}{2}$

Vì $t$ nguyên dương suy ra $t=1;2$

$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)

Bình luận (0)
NT
10 tháng 8 2021 lúc 14:15

Bài 8: 

Để M nguyên thì \(\sqrt{x}+5⋮\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(4\right)\)

\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)

hay \(x\in\left\{0;1;9\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 9 2019 lúc 13:19

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 6 2019 lúc 17:41

Đáp án B

Ta có:

Bình luận (0)
NN
Xem chi tiết
TL
Xem chi tiết
PD
14 tháng 12 2023 lúc 21:04

Để x + 2y và 2x - y là số hữu tỷ, ta có thể thiết lập hệ phương trình sau:

 

x + 2y = a/b (1)

2x - y = c/d (2)

 

Trong đó a, b, c, d là các số nguyên và b, d khác 0.

 

Từ phương trình (1), ta có x = a/b - 2y. Thay vào phương trình (2), ta có:

 

2(a/b - 2y) - y = c/d

2a/b - 4y - y = c/d

2a/b - 5y = c/d

 

Để 2a/b - 5y là số hữu tỷ, ta cần 5y cũng là số hữu tỷ. Vì vậy, y phải là số hữu tỷ.

 

Tiếp theo, để x = a/b - 2y là số hữu tỷ, ta cần a/b - 2y cũng là số hữu tỷ. Vì y là số hữu tỷ, nên a/b - 2y cũng là số hữu tỷ.

 

Vậy, nếu x + 2y và 2x - y là số hữu tỷ, thì x và y đều là số hữu tỉ.

Bình luận (0)