Những câu hỏi liên quan
VB
Xem chi tiết
LL
Xem chi tiết
PN
11 tháng 8 2015 lúc 21:28

2/AB/AC=3/4 nên AB=3AC/4(1)

Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC

 

Bình luận (0)
NA
Xem chi tiết
CL
20 tháng 6 2023 lúc 15:00

Để tính AB và AC, ta sẽ sử dụng định lý Pythagoras trong tam giác vuông.

Với ∆ABC vuông tại A và BD là phân giác của góc B, ta có:

BD/BC = 3/4

Vì BD/BC = 3/4, ta có thể xác định giá trị của BD và CD:

BD = (3/4) * BC = (3/4) * 20cm = 15cm CD = BC - BD = 20cm - 15cm = 5cm

Với AB > AC, ta có thể gọi AB = x và AC = y (với x > y).

Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:

AB^2 = AC^2 + BC^2

x^2 = y^2 + 20^2

Ta cũng biết rằng BD là phân giác của góc B, do đó:

AD = DC = 5cm

Áp dụng định lý Pythagoras trong tam giác vuông ABD, ta có:

AB^2 = AD^2 + BD^2

x^2 = 5^2 + 15^2

x^2 = 25 + 225

x^2 = 250

Từ phương trình trên, ta có x = √250 = 5√10

Do đó, AB = 5√10 cm.

Tiếp theo, ta sẽ tính giá trị của y (AC).

Áp dụng định lý Pythagoras trong tam giác vuông ACD, ta có:

AC^2 = AD^2 + CD^2

y^2 = 5^2 + 5^2

y^2 = 25 + 25

y^2 = 50

Từ phương trình trên, ta có y = √50 = 5√2

Do đó, AC = 5√2 cm.

Tóm lại, AB = 5√10 cm và AC = 5√2 cm.

Bình luận (0)
BT
Xem chi tiết
BT
26 tháng 3 2020 lúc 9:20

mọi ngouiwf trả lời câu này giúp mik vs

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
GH
6 tháng 7 2023 lúc 15:27

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

Bình luận (0)
HQ
Xem chi tiết
TT
8 tháng 2 2021 lúc 21:30

Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)

                                        => AM là trung tuyến

Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)

                                      =>   AM là đường cao (TC các đường trong tam giác cân)

Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)

                              EM là đường cao (AM là đường cao, E thuộc AM)

=> Tam giác EBC cân tại E

M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Xét tam giác AMB vuông tại M (AM \(\perp BM\))

               AB= AM2 + BM2 (định lý Py ta go)

Thay số:  AB= 82 + 62

        <=> AB=  100

        <=> AB = 10 (cm)

Vậy AB = 10 (cm)

Bình luận (0)
TT
8 tháng 2 2021 lúc 21:10

Bài 1:

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AH2 = BH . HC (hệ thức lượng)

<=>    122  = 9 . HC

<=>    HC   = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)

Vậy HC = 16 (cm)

Ta có: BC = BH + HC = 9 + 16 = 25 (cm)

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AB2 = BH . BC (hệ thức lượng)

<=>    AB2 = 9 . 25

<=>    AB2 = 225

<=>    AB   = 15 (cm)

Vậy AB = 15 (cm)

Bình luận (0)
MH
Xem chi tiết
LL
20 tháng 9 2021 lúc 17:34

Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=25\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác ABC vuông tại A:

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)

Ta có: \(P_{ABC}=AB+AC+BC=20+15+25=60\left(cm\right)\)

Bình luận (0)
NN
Xem chi tiết
PN
16 tháng 1 2018 lúc 12:42

\(\Delta ABC\)vuông tại \(A\Leftrightarrow AB^2+AC^2=BC^2=400\)

\(4AB=3AC\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)

\(\Rightarrow\hept{\begin{cases}AB^2=9.16=144\Leftrightarrow AB=12\\AC^2=16.16\Leftrightarrow AC=16\end{cases}}\)

Bình luận (1)
PB
Xem chi tiết
CT
15 tháng 9 2018 lúc 7:07

Vẽ thành hình vuông cạnh 20cm
Ở giữa là 1 hình vuông nhỏ cạnh 4cm

Suy ra 4 lần:  SABC =20x20-4x4=384 ---->SABC=384:4=96cm

Bình luận (0)