Những câu hỏi liên quan
NT
Xem chi tiết
HM
1 tháng 8 2023 lúc 21:02

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow x=\dfrac{2}{3}y\)

Thay vào \(x^2+y^2=325\), ta có: 

\(\dfrac{4}{9}y^2+y^2=325\\ \Leftrightarrow\dfrac{13}{9}y^2=325\\ \Leftrightarrow y^2225\\ \Leftrightarrow\left[{}\begin{matrix}y=15\Rightarrow x=10\\y=-15\Rightarrow x=-10\end{matrix}\right.\)

 

Bình luận (0)
NT
1 tháng 8 2023 lúc 20:59

Đặt x/2=y/3=k

=>x=2k; y=3k

x^2+y^2=325

=>13k^2=325

=>k^2=25

TH1: k=5

=>x=10; y=15

TH2: k=-5

=>x=-10; y=-15

Bình luận (0)
H24
1 tháng 8 2023 lúc 21:12
Bình luận (2)
HS
Xem chi tiết
NT
10 tháng 8 2021 lúc 13:53

5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

nên x=5k; y=3k

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow25k^2-9k^2=4\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)

Bình luận (1)
74
25 tháng 4 2024 lúc 13:38

Để giải từng phương trình:

1) \( -\frac{5}{2}x + 1 = -\frac{3}{x} - 2 \)

Đưa về cùng một cơ sở:
\[ -5x + 2 = -6 - 2x \]

\[ -5x + 2x = -6 - 2 \]

\[ -3x = -8 \]

\[ x = \frac{8}{3} \]

2) \( \frac{x}{-2} = \frac{y}{-3} \) và \( x \cdot y = 54 \)

Từ phương trình thứ nhất:
\[ x = -\frac{2y}{3} \]

Thay vào phương trình thứ hai:
\[ (-\frac{2y}{3}) \cdot y = 54 \]

\[ -\frac{2y^2}{3} = 54 \]

\[ y^2 = -\frac{81}{2} \]

Phương trình không có nghiệm thực vì \( y^2 \) không thể là số âm.

3) \( | \frac{2}{5} \cdot \sqrt{x} - \frac{1}{3} | - \frac{2}{5} = \frac{3}{5} \)

Đưa \( \frac{2}{5} \) về chung mẫu số với \( \frac{1}{3} \):
\[ | \frac{6\sqrt{x}}{15} - \frac{5}{15} | = \frac{3}{5} + \frac{2}{5} \]

\[ | \frac{6\sqrt{x} - 5}{15} | = \frac{5}{5} \]

\[ |6\sqrt{x} - 5| = 3 \]

Giải phương trình trên:
\[ 6\sqrt{x} - 5 = 3 \] hoặc \( 6\sqrt{x} - 5 = -3 \)

\[ 6\sqrt{x} = 8 \] hoặc \( 6\sqrt{x} = 2 \)

\[ \sqrt{x} = \frac{4}{3} \] hoặc \( \sqrt{x} = \frac{1}{3} \)

\[ x = \frac{16}{9} \] hoặc \( x = \frac{1}{9} \)

4) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)

Từ phương trình 1:
\[ x = \frac{2}{3}y \]

Từ phương trình 2:
\[ z = \frac{7}{5}y \]

Thay vào phương trình 3:
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]

\[ \frac{2}{3}y - \frac{3}{3}y + \frac{7}{5}y = 32 \]

\[ (\frac{2}{3} - 1 + \frac{7}{5})y = 32 \]

\[ (\frac{10}{15} - \frac{15}{15} + \frac{21}{15})y = 32 \]

\[ (\frac{10 - 15 + 21}{15})y = 32 \]

\[ (\frac{16}{15})y = 32 \]

\[ y = 20 \]

Thay vào phương trình 1 và 2:
\[ x = \frac{2}{3} \cdot 20 = \frac{40}{3} \]

\[ z = \frac{7}{5} \cdot 20 = 28 \]

5) \( \frac{x}{5} = \frac{y}{3} \) và \( x^2 - y^2 = 4 \)

Từ phương trình 1:
\[ x = \frac{5}{3}y \]

Thay vào phương trình 2:
\[ (\frac{5}{3}y)^2 - y^2 = 4 \]

\[ \frac{25}{9}y^2 - y^2 = 4 \]

\[ (\frac{25}{9} - 1)y^2 = 4 \]

\[ (\frac{25 - 9}{9})y^2 = 4 \]

\[ (\frac{16}{9})y^2 = 4 \]

\[ y^2 = \frac{9}{4} \]

\[ y = \frac{3}{2} \]

Thay vào phương trình 1:
\[ x = \frac{5}{3} \cdot \frac{3}{2} = \frac{5}{2} \]

Vậy, giải hệ phương trình ta được:
1) \( x = \frac{8}{3} \)
2) Phương trình không có nghiệm thực.
3) \( x = \frac{16}{9} \) hoặc \( x = \frac{1}{9} \)
4) \( x = \frac{40}{3} \), \( y = 20 \), \( z = 28 \)
5) \( x = \frac{5}{2} \), \( y = \frac{3}{2} \)

Bình luận (0)
DM
Xem chi tiết
TD
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
MY
7 tháng 6 2021 lúc 19:05

vì  x và y biết x và y tỉ lệ nghịch với 3 và 2

=>pt: \(\dfrac{x}{y}=\dfrac{2}{3}\)\(=>y=\dfrac{3}{2}x\)(1)

lại có ổng bình phương 2 số đó là 325

=>pt: \(x^2+y^2=325\left(2\right)\)

thế (1) vào (2)=>\(x^2+\left(\dfrac{3x}{2}\right)^2=325\)

\(< =>x^2+\dfrac{9x^2}{4}=325< =>\dfrac{4x^2+9x^2}{4}=325\)

\(< =>4x^2+9x^2=1300\)

đặt \(x^2=t\left(t\ge0\right)=>4t+9t=1300< =>13t=1300< =>t=100\left(TM\right)\)

=>\(x^2=100=>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)\(=>\left[{}\begin{matrix}y=\dfrac{3}{2}.10\\y=\dfrac{3}{2}\left(-10\right)\end{matrix}\right.< =>\left[{}\begin{matrix}y=15\\y=-15\end{matrix}\right.\)

vậy (x,y)={(10;15)(-10;-15)}

 

Bình luận (3)
VH
Xem chi tiết
NH
Xem chi tiết