Hai ∆ đồng dạng thì mình có được tỉ số đồng dạng đúng kh
Chọn đúng (Đ), sai (S) điền vào chỗ chấm.
a) Nếu hai tam giác cân có các góc ở đỉnh bằng nhau thì đồng dạng với nhau. ...
b) Nếu Δ A B C ~ Δ D E F với tỉ số đồng dạng là 1/2 và Δ D E F ~ Δ M N P với tỉ số đồng dạng là 4/3 thì Δ M N P ~ Δ A B C với tỉ số đồng dạng là 2/3 ....
c) Trên cạnh AB, AC của ΔABC lấy 2 điểm I và K sao cho A I / A B = A K / B C t h ì I K / / B C . . . .
d) Hai tam giác đồng dạng thì bằng nhau....
Nếu thực hiện liên tiếp phép đồng dạng tỉ số k và phép đồng dạng tỉ số p thì ta được phép đồng dạng có tỉ số
A. p k
B. p – k
C. p + k
D. p.k
Chọn tất cả các khẳng định sai.(Được chọn nhiều đáp án)
A.Tỉ số chu vi của hai tam giác đồng dạng bằng tỉ số đồng dạng.
B.Hai tam giác cân luôn đồng dạng với nhau.
C.Hai tam giác bằng nhau thì đồng dạng với nhau.
D.Hai tam giác đồng dạng với nhau thì bằng nhau.
1. 2 tam giác đều thì đồng dạng đúng hay sai 2. 2 tam vuông thì đồng dạng đúng hay sai 3. Hai tam giác đồng dạng thì bằng nhau đúng hay sai 4. Hai tam giác vuông có cạnh huyền bằng nhau thì chúng đồng dạng đúng hay sai
1. 2 tam giác đều thì đồng dạng
2. 2 tam vuông thì đồng dạng
Hai ý đầu chưa rõ
3. Hai tam giác đồng dạng thì bằng nhau => Sai
4. Hai tam giác vuông có cạnh huyền bằng nhau thì chúng đồng dạng => Sai
Chứng minh rằng, nếu hai tam giác ABC và A'B'C' đồng dạng với nhau thì :
a) Tỉ số của hai đường phân giác tương ứng bằng tỉ số đồng dạng
b) Tỉ số của hai trung tuyến tương ứng bằng tỉ số đồng dạng
a) BE // DC => ∆BEF ∽ ∆CDF
AD // BF => ∆ADE ∽ ∆BFE.
Do đó: ∆ADE ∽ ∆CFD
b) BE = AB - AE = 12 - 8 = 4cm
∆ADE ∽ ∆BFE => \(\dfrac{AE}{BE}=\dfrac{AD}{BF}=\dfrac{DE}{FD}\)
=> \(\dfrac{8}{4}=\dfrac{7}{BF}=\dfrac{10}{EF}\)
=> BF = 3,5 cm.
EF = 5 cm.
Ta có tam giác đồng dạng với tam giác A1B1C1 với tỉ số đồng dạng 2 phần 3, tam giác A1B1B1 đòng dạng với tam giác với tỉ số đồng dạng 3 phần 4
a) Vì sao tam giác ABC đồng dạng với tam giác A2B2C2
b) Tìm tỉ số đồng dạng của 2 tam giác đó.
Giúp mình gấp nha
a: ΔABC đồng dạng với ΔA1B1C1
=>AB/A1B1=2/3=AC/A1C1 và góc A=góc A1
=>A1B1=3*AB/2; AC=3/2*A1C1
ΔA1B1C1 đồng dạng với ΔA2B2C2
=>A1B1/A2B2=3/4=A1C1/A2C2 và góc A1=góc A2
=>A1B1=3/4*A2B2; A1C1=3/4*A2C2
=>3/4*A2B2=3/2*AB và 3/4*A2C2=3/2*AC
=>A2B2/AB=3/2:3/4=2 và A2C2/AC=3/2:3/4=2
=>A2B2/AB=A2C2/AC(1)
góc A=góc A1
góc A1=góc A2
=>góc A=góc A2(2)
Từ (1), (2) suy ra ΔA2B2C2 đồng dạng với ΔABC
b: k=A2B2/AB=2
Hãy chọn câu đúng. Nếu tam giác ABC đồng dạng với tam giác MNP theo tỉ số k thì tam giác MNP đồng dạng với tam giác ABC theo tỉ số:
A. 1 k 2
B. 1 k
C. k 2
D. k
Vì ΔABC ⁓ ΔMNP theo tỉ số k nên
A B M N = k ⇒ M N A B = 1 k
Nên ΔMNP ⁓ ΔABC theo tỉ số
Đáp án: B
Hãy chọn câu đúng. Nếu tam giác ABC đồng dạng với tam giác MNP theo tỉ số k=2 thì tam giác MNP đồng dạng với tam giác ABC theo tỉ số:
A.2
B. 2
C. 1 2
D. 4
Vì ΔABC ⁓ ΔMNP theo tỉ số k =2 ⇒ M N A B = 1 2
Nên ΔMNP ⁓ ΔABC theo tỉ số M N A B = 1 2
Đáp án: C
1) Chứng minh tỉ số hai đường cao tương ứng của hai tam giác đồng dạng thì bằng tỉ số đồng dạng.
2) Chứng minh tỉ số hai đường phân giác tương ứng của hai tam giác đồng dạng thì bằng tỉ số đồng dạng.
3) Chứng minh tỉ số hai đường trung tuyến tương ứng của hai tam giác đồng dạng thì bằng tỉ số đồng dạng.
3
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\)
Xét tam giác A'B'H' và tam giác ABH có:
góc A'H'B' = góc ABH (=90o)
góc A'B'H'= góc ABH (vì tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'H' đồng dạng với tam giác ABH (g.g)
Do vậy \(\dfrac{A'H'}{AH}=\dfrac{A'B'}{AB}=k\)
2/
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\) (1)
và \(\)góc B'A'M' = góc BAM \(\left(=\dfrac{1}{2}B'A'C'=\dfrac{1}{2}BAC\right)\) (2)
Xét tam giác A'B'M' và tam giác ABC có:
góc B'A'M' = góc BAM (từ 2)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (g.g)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\) (từ 1)
3/
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{\dfrac{B'C'}{2}}{\dfrac{BC}{2}}=\dfrac{B'M'}{BM}\) (1)
Xét tam giác A'B'M' và tam giác ABM có:
\(\dfrac{A'B'}{AB}=\dfrac{B'M'}{BM}\) (từ 1)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (c.g.c)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\)