Những câu hỏi liên quan
NQ
Xem chi tiết
NT
14 tháng 7 2023 lúc 23:04

Bài 3 :

\(BC=HC+HB=16+9=25\left(cm\right)\)

\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)

\(\Rightarrow AB=15\left(cm\right)\)

\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)

Bài 6:

\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)

\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC) 

\(BC=BH+HC=2+2=4\left(cm\right)\)

Chu vi Δ ABC :

\(4+4+4=12\left(cm\right)\)

Bình luận (0)
HA
Xem chi tiết
NT
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
8D
Xem chi tiết
H24
20 tháng 2 2022 lúc 9:36

bạn cần bài nào

Bình luận (1)
NN
20 tháng 2 2022 lúc 9:38

2 BÀI CHẢ BT HỎI BÀI NÀO

Bình luận (1)
TL
20 tháng 2 2022 lúc 9:40

Cần bài nào hả bn

Bình luận (1)
H24
Xem chi tiết
NM
16 tháng 9 2021 lúc 18:29

\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=3,24\left(cm\right)\\HC=\dfrac{AC^2}{BC}=10,24\left(cm\right)\\AH=\sqrt{3,24\cdot10,24}=5,76\left(cm\right)\end{matrix}\right.\)

Bình luận (1)
TV
Xem chi tiết
NT
22 tháng 1 2024 lúc 8:16

Bài 3:

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{ABC}\) chung

Do đó: ΔHBA~ΔABC

b: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=9^2+12^2=225\)

=>\(BC=\sqrt{225}=15\left(cm\right)\)

Xét ΔBAC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot15=9^2=81\)

=>\(BH=\dfrac{81}{15}=5,4\left(cm\right)\)

c: ta có: HK\(\perp\)AB

AC\(\perp\)AB

Do đó: HK//AC

Xét ΔCAB có HK//AC

nên \(\dfrac{HK}{AC}=\dfrac{BH}{BC}\)

=>\(\dfrac{HK}{12}=\dfrac{5.4}{15}=\dfrac{54}{150}=\dfrac{9}{25}\)

=>\(HK=12\cdot\dfrac{9}{25}=\dfrac{108}{25}=4,32\left(cm\right)\)

Bình luận (0)
CG
Xem chi tiết
NQ
Xem chi tiết
KK
Xem chi tiết
NT
22 tháng 9 2015 lúc 12:57

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

Bình luận (0)
HQ
Xem chi tiết
TT
8 tháng 2 2021 lúc 21:30

Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)

                                        => AM là trung tuyến

Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)

                                      =>   AM là đường cao (TC các đường trong tam giác cân)

Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)

                              EM là đường cao (AM là đường cao, E thuộc AM)

=> Tam giác EBC cân tại E

M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Xét tam giác AMB vuông tại M (AM \(\perp BM\))

               AB= AM2 + BM2 (định lý Py ta go)

Thay số:  AB= 82 + 62

        <=> AB=  100

        <=> AB = 10 (cm)

Vậy AB = 10 (cm)

Bình luận (0)
TT
8 tháng 2 2021 lúc 21:10

Bài 1:

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AH2 = BH . HC (hệ thức lượng)

<=>    122  = 9 . HC

<=>    HC   = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)

Vậy HC = 16 (cm)

Ta có: BC = BH + HC = 9 + 16 = 25 (cm)

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AB2 = BH . BC (hệ thức lượng)

<=>    AB2 = 9 . 25

<=>    AB2 = 225

<=>    AB   = 15 (cm)

Vậy AB = 15 (cm)

Bình luận (0)