Những câu hỏi liên quan
NA
Xem chi tiết
HT
Xem chi tiết
NT
20 tháng 5 2023 lúc 11:47

a: góc OAK+góc OBK=90+90=180 độ

=>OAKB nội tiếp

Xét ΔKAC và ΔKDA có

góc KAC=góc KDA

góc AKC chung

=>ΔKAC đồng dạng với ΔKDA

=>KA^2=KC*KD

b: Xét (O) có

KA,KB là tiếp tuyến

=>KA=KB

=>OK là trung trực của AB

=>KM*KO=KA^2=KC*KD

=>KM/KD=KC/KO

=>ΔKMC đồng dạng với ΔKDO

=>góc KMC=góc KDO

Bình luận (0)
H24
Xem chi tiết
NT
26 tháng 7 2023 lúc 21:36

a: góc OAK+góc OBK=180 độ

=>OAKB nội tiếp

Xét ΔKAC và ΔKDA có

góc KAC=góc KDA

góc AKC chung

=>ΔKAC đồng dạng với ΔKDA
=>KA/KD=KC/KA

=>KA^2=KD*KC

b: Xét (O) có

KA,KB là tiếp tuyến

=>KA=KB

mà OA=OB

nên OK là trung trực của AB

=>OK vuông góc AB tại M

Xét ΔOAK vuông tại A có AM vuông góc OK

nên KM*KO=KA^2=KC*KD

=>KM/KD=KC/KO

=>ΔKMC đồng dạng với ΔKDO

=>góc KMC=góc KDO

Bình luận (0)
QV
Xem chi tiết
NT
9 tháng 1 2024 lúc 11:08

1: Xét tứ giác KAOB có \(\widehat{KAO}+\widehat{KBO}=90^0+90^0=180^0\)

nên KAOB là tứ giác nội tiếp

2: Xét (O) có

\(\widehat{KAC}\) là góc tạo bởi tiếp tuyến AK và dây cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{KAC}=\widehat{ADC}\)

Xét ΔKAC và ΔKDA có

\(\widehat{KAC}=\widehat{KDA}\)

\(\widehat{AKC}\) chung

Do đó: ΔKAC đồng dạng với ΔKDA

=>\(\dfrac{KA}{KD}=\dfrac{KC}{KA}\)

=>\(KA^2=KC\cdot KD\)

Xét (O) có

KA,KB là các tiếp tuyến

Do đó: KA=KB

=>K nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OK là đường trung trực của AB

=>OK\(\perp\)AB tại M và M là trung điểm của AB

Xét ΔOAK vuông tại A có AM là đường cao

nên \(KM\cdot KO=KA^2\)

=>\(KA^2=KM\cdot KO=KC\cdot KD\)

 

Bình luận (0)
CT
Xem chi tiết
H24
27 tháng 1 2022 lúc 13:59

a) Ta có \(I\) là trung điểm \(AB,O\) là trung điểm \(BM\)

\(\rightarrow IO\) là đường trung bình \(\Delta ABM\rightarrow OI\text{/ / }AM\rightarrow OI\text{/ / }KM\)

Vì \(BM\) là đường kính của \(O\)\(\rightarrow BK\text{⊥}KM\rightarrow OI\text{⊥}BK\)

\(\rightarrow B,K\) đối xứng qua \(OI\)

\(\rightarrow\widehat{IKO=\widehat{IBO}=90^o}\)

\(\rightarrow IK\) là tiếp tuyền của \(O\)

Biết mỗi làm câu A

Bình luận (0)
H24
27 tháng 1 2022 lúc 14:02

Hình vẽ

undefined

Bình luận (0)
NT
27 tháng 1 2022 lúc 14:04

a, ^BKM = 900 ( góc nt chắn nửa đường tròn ) 

Xét tam giác BMK có : ^BKM = 900 

Vậy tam giác BMK vuông tại K

Vì AB là tiếp tuyến đường tròn (O) => ^ABO = 900

Xét tam giác ABM vuông tại B có BK là đường cao 

\(AB^2=AK.AM\)( hệ thức lượng ) 

b, Ta có : ^BKM = 900 ( góc nt chắn nửa đường tròn ) 

=> ^BKA = 900 

Xét tam giác BKA vuông tại K, có I là trung điểm AB 

=> IK = IA = IB 

Xét tam giác IKO và tam giác IBO có : 

IK = IB ( cmt ) 

IO _ chung 

OK = OB = R 

Vậy tam giác IKO = tam giác IBO ( c.c.c ) 

=> ^IKO = ^IBO = 900 ( 2 góc tương ứng ) 

Xét (O) có : K thuộc IK; K thuộc (O) 

=> IK là tiếp tuyến đường tròn (O)

Bình luận (4)
DT
Xem chi tiết
NT
16 tháng 6 2023 lúc 23:21

a: góc OHK+góc OBK=180 độ

=>OHKB nội tiếp

b: góc AHK=góc AOK

góc BHK=góc BOK

mà góc AOK=góc BOK

nên góc AHK=góc BHK

=>HK là phân giác của góc AHB

Bình luận (0)
DT
Xem chi tiết
NT
17 tháng 6 2023 lúc 8:43

loading...

 

Bình luận (0)
ML
Xem chi tiết
JH
Xem chi tiết
JH
3 tháng 2 2022 lúc 13:30

mik chỉ cần câu b thôi

hehe

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 2 2018 lúc 9:14

 

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: OH > R > OK

⇒ ∠(OKH) > ∠(OHK)

(Góc đối diện với cạnh lớn hơn thì lớn hơn)

 

Bình luận (0)