Thu gọn các đa thức sau và sắp xếp theo lũy thừa giảm dần của biến; sau đó cho biết hệ số tự do và hệ số cao nhất của chúng:
a, x5 - 3x2 + x4 - 4x - x5 + 5x4 + x2-1
b, x - x9 + x2 - 5x3 + x6 - x + 3x9 + 2x6 - x3+7
giúp mình với ạ=(((
Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến
cho đa thức A=9-x^3+4x-2x^3+4x^2-6 và B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4
1)thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến
2)tìm nghiệm của đa thức A-B
mong mn trả lời giúp ạ
1: \(A\left(x\right)=-3x^3+4x^2+4x+3\)
\(B\left(x\right)=-3x^3+4x^2-x+7\)
2: \(A-B=0\)
=>4x+3-x+7=0
=>3x+10=0
hay x=-10/3
1)
\(A=9-x^3+4x-2x^3+4x^2-6\)
\(A=(9-6)+\left(-x^3-2x^3\right)+4x+4x^2\)
\(A=3-3x^3+4x+4x^2\)
\(A=-3x^3+4x^2+4x+3\)
\(B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4\)
\(B=(3+4)+(x^3+2x^3-6x^3)+4x^2+(7x-8x)\)
\(B=7-3x^3+4x^2-x\)
\(B=-3x^3+4x^2-x+7\)
2) \(A-B=(-3x^3+4x^2+4x+3)-\) \((-3x^3+4x^2-x+7)\)
\(A-B=-3x^3+4x^2+4x+3+\)\(3x^3-4x^2+x-7\)
\(A-B\) \(=\left(-3x^3+3x^3\right)+\left(4x^2-4x^2\right)+\left(4x+x\right)+\left(3-7\right)\)
\(A-B\) \(=5x-4\)
Đặt tên cho đa thức \(5x-4\) là \(H\left(x\right)\)
Cho \(H\left(x\right)=0\)
hay \(5x-4=0\)
\(5x\) \(=0+4\)
\(5x\) \(=4\)
\(x\) \(=4:5\)
\(x\) \(=\) \(0,8\)
Vậy \(x=0,8\) không phải là nghiệm của H(\(x\))
MIK KHÔNG CHẮC LÀ CÂU 2 ĐÚNG
Cho đa thức:
\(A=x^4+2\left(3x^2-x\right)-2x^3+5x+2\)
Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến.
+ Thu gọn :
\(A=x^4+6x^2-2x-2x^3+5x+2\)
\(=x^4+6x^2-2x^3+3x+2\)
+ Sắp xếp giảm dần :
\(A=x^4-2x^3+6x^2+3x+2\)
Cho hai đa thức A(x) = 5 +3x2 – x - 2x2 và B(x) = 3x + 3 – x – x2
Thu gọn và sắp xếp hai đa thức theo lũy thừa giảm dần của biến.
Thu gọn
A(x) = 5 +3x2 – x - 2x2
A(x) = 5+x2-x
A(x) = x2-x+5
B(x) = 3x + 3 – x – x2
B(x) = ( 3x-x) + 3 - x2
B(x) = 2x+3-x2
B(x)= -x2 + 2x+3
\(A(x) = 5 +3x^2 – x - 2x^2 = 5 + ( 3^2 - 2x^2 ) - x = x^2 -x+5\)
\( B(x) = 3x + 3 – x – x^2 = ( 3x-x ) + 3 - x^2 = 2x + 3 - x^2 = -x^2 + 2x +3\)
Cho đa thức
a) Thu gọn và sắp xếp theo lũy thừa giảm dần của biến.
b) Tìm bậc và các hệ số của Q(x).
c) Chứng tỏ Q(x) không có nghiệm.
`a,`
`Q(x)=`\(-3x^4+4x^3+2x^2+\)\(\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
`=(-3x^4-2x^4+8x^4)+(4x^3-4x^3)+2x^2+(-3x+3x)+(2/3+1)`
`= 3x^4+2x^2+5/3`
`b,`
Bậc của đa thức: `4`
Hệ số cao nhất: `3`
Hệ số tự do: `5/3`
`c,`
Đặt `3x^4+2x^2+5/3=0`
Vì \(\left\{{}\begin{matrix}x^4\ge0\rightarrow3x^4\ge0\\x^2\ge0\rightarrow2x^2\ge0\end{matrix}\right.\)
`-> 3x^4+2x^2+5/3`\(>0\)
`->` Đa thức `Q(x)` vô nghiệm.
`@`\(\text{dn inactive.}\)
Cho đa thức: P(x) = 2x4 + 5x3 – 2x2 + 4x2 – x4 – 4x3 + 2 – x4
a/ Thu gọn và sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm dần của biến.
b/ Tính P(1) và P(-1)
Thu gọn và sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến: P(x)=x3+2x2+2
P(1)=13+2.12+2=1+2+2=5
P(-1)=(-1)3+2.(-1)2+2=(-1)+2+2=3
Cho hai đa thức và .
a) Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của .
b) Tính
Thu gọn các đa thức sau và sắp xếp theo lũy thừa giảm của biến: x5 – 3x2 + x4 - 1/2 x – x5 + 5x4 + x2 – 1
x5 – 3x2 + x4 - 1/2 x – x5 + 5x4 + x2 – 1
= (x5 – x5) + (-3x2 + x2) + (x4 + 5x4) – 1/2.x – 1
= -2x2 + 6x4 - 1/2 x – 1
Sắp xếp: 6x4 – 2x2 - 1/2 x - 1
Thu gọn các đa thức sau và sắp xếp theo lũy thừa giảm của biến: x – x9 + x2 – 5x3 + x6 – x + 3x9 + 2x6 – x3 + 7
x – x9 + x2 – 5x3 + x6 – x + 3x9 + 2x6 – x3 + 7
= (x – x) + (-x9 + 3x9) + x2 – (5x3 + x3) + (x6 + 2x6) + 7.
= 2x9 + x2 – 6x3 + 3x6 + 7
Sắp xếp: 2x9 + 3x6 – 6x3 + x2 + 7
Cho hai đa thức
A ( x ) = x 5 + x 2 + 5 x + 6 - x 5 - 3 x - 5 , B ( x ) = x 4 + 2 x 2 - 3 x - 3 - x 4 - x 2 + 3 x + 4
a. Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.
a. Ta có: A(x) = x5 + x2 + 5x + 6 - x5 - 3x - 5
= x2 + 2x + 1 (0.5 điểm)
B(x) = x4 + 2x2 - 3x - 3 - x4 - x2 + 3x + 4 = x2 + 1 (0.5 điểm)
Cho hai đa thức
f ( x ) = - 2 x 2 - 3 x 3 - 5 x + 5 x 3 - x + x 2 + 4 x + 3 + 4 x 2 , g ( x ) = 2 x 2 - x 3 + 3 x + 3 x 3 + x 2 - x - 9 x + 2
a. Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến
a. Ta có:
f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
= 2x3 + 3x2 - 2x + 3 (0.5 điểm)
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
= 2x3 + 3x2 - 7x + 2 (0.5 điểm)