Những câu hỏi liên quan
CT
Xem chi tiết
GD
27 tháng 2 2021 lúc 12:38

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y}\). khi đó gt trở thành:

\(a+b=a^2+b^2-ab\ge\dfrac{1}{4}\left(a+b\right)^2\Leftrightarrow o\le a+b\le4\);

\(A=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=\left(a+b\right)^2\le16\)

Đẳng thức xảy ra khi và chỉ khi a=b=2 <=> x=y=1/2

Vậy Max A = 16

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 10 2018 lúc 10:16

x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1 ⇔ ( 1 + x ) 2 ( 1 + y ) 2 = 1 − x y ⇒ ( 1 + x 2 ) ( 1 + y 2 ) = 1 - x y 2 ⇔ 1 + x 2 + y 2 + x 2 y 2 = 1 − 2 x y + x 2 y 2 ⇔ x 2 + y 2 + 2 x y = 0 ⇔ x + y 2 = 0 ⇔ y = − x ⇒ x 1 + y 2 + y 1 + x 2 = x 1 + x 2 − x 1 + x 2 = 0

Bình luận (0)
NL
Xem chi tiết
H24
8 tháng 5 2021 lúc 10:13

Đặt \(P=\dfrac{xy}{xy+1}\Rightarrow\dfrac{1}{P}=\dfrac{xy+1}{xy}=1+\dfrac{1}{xy}\)

Ta có : \(xy\le\dfrac{x^2+y^2}{2}=\dfrac{8}{2}=4\Rightarrow\dfrac{1}{xy}\ge4\)

\(\Rightarrow\dfrac{1}{P}\ge5\Rightarrow P\le\dfrac{1}{5}\)

Dấu "=" xảy ra khi $x=y=2$

Bình luận (0)
TC
Xem chi tiết
TC
4 tháng 3 2018 lúc 14:38

CMR: \(\frac{1}{x}+\frac{1}{y}\le2\)  biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0

Bình luận (0)
TC
8 tháng 3 2018 lúc 15:31

tôi quên mât CMR: 1/x+1/y<=-2

Bình luận (0)
BH
Xem chi tiết
NL
9 tháng 3 2023 lúc 23:41

\(P=\dfrac{x^3+y^3}{x^3y^3}=\dfrac{\left(x+y\right)\left(x^2+y^2-xy\right)}{x^3y^3}=\dfrac{x^2y^2\left(x+y\right)}{x^3y^3}=\dfrac{x+y}{xy}=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{x^2+y^2-xy}=\dfrac{4\left(x^2+y^2-xy\right)-3\left(x^2+y^2-2xy\right)}{x^2+y^2-xy}\)

\(=4-\dfrac{3\left(x-y\right)^2}{x^2+y^2-xy}\le4\)

\(P_{max}=4\) khi \(x=y=\dfrac{1}{2}\)

 

Bình luận (0)
NC
Xem chi tiết
PB
Xem chi tiết
CT
5 tháng 5 2018 lúc 18:16

Theo BĐt Côsi: 

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 12 2019 lúc 18:30

Đáp án D

Phương pháp giải:

Đặt ẩn phụ, đưa về hàm một biến, dựa vào giả thiết để tìm điều kiện của biến

Lời giải:

Từ giả thiết chia cả 2 vế cho x2y2 ta được :  

Đặt  ta có 

Khi đó  

Ta có  mà 

nên 

Dấu đẳng thức xảy ra khi Vậy Mmax = 16

Bình luận (0)
TV
Xem chi tiết