Cho x,y,z>0 với xyz=1 CMR
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x, y, z là các số hữu tỉ khác nhau và khác 0 sao cho x+1/y = y+1/z = z+1/x . CMR xyz=1 hoặc xyz=-1
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\\x-z=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\left(y-z\right)=\frac{\left(y-z\right)\left(y-x\right)\left(z-x\right)}{\left(xyz\right)^2}\)
\(\Rightarrow\left(xyz\right)^2=1\Leftrightarrow\orbr{\begin{cases}xyz=1\\xyz=-1\end{cases}}\).
Áp dụng bđt AM - GM:
\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).
Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.
Áp dụng BĐT Cosi:
\(\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)\)
\(\ge3\left(x+y+z\right)\)
\(\ge x+y+z+2.3\sqrt[3]{xyz}\)
\(=x+y+z+6\)
\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)
Đẳng thức xảy ra khi \(x=y=z=1\)
cho x ,y, z >0 và x+y+z=1 cmr 1/x+1/y+1=z>18/xyz+2
Cho x, y, z > 0 thỏa mãn : x + y + z = xyz. CMR :
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)
Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)
Cho x, y, z > 0 thỏa mãn : x + y + z = xyz. CMR :
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
cho x,y,z >0 và x+y+z=1
CMR: S = xyz(x+y)(y+z)(z+x) <=8/729
Áp dụng BĐT Cô - si cho 3 số không âm:
\(x+y+z\ge3\sqrt[3]{xyz}\)hay \(1\ge3\sqrt[3]{xyz}\)
\(\Rightarrow\sqrt[3]{xyz}\le\frac{1}{3}\Rightarrow xyz\le\frac{1}{27}\)
(Dấu "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))
Lại áp dụng BĐT Cô - si cho 3 số không âm là x + y; y + z; x + z, ta được:
\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\Rightarrow2\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)(Vì x + y + z = 1)
\(\Rightarrow27\left(x+y\right)\left(y+z\right)\left(x+z\right)\le8\)(lập phương hai vế)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\le\frac{8}{27}\)
(Dâú "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))
\(\Rightarrow S\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\)(Dâú "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))
Cho x, y, z > 0 và xyz=1. CMR :
\(\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z}+\dfrac{z^2}{1+z}\ge\dfrac{3}{2}\)
Đề sai nhé, \(\dfrac{z^2}{x+1}\) mới đúng nha
\(\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3}\left(\text{Svácxơ}\right)\)
\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Ta có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow x+y+z+3\le2\left(x+y+z\right)\)
Cho x,y,z>0 và xyz=1. cmr: x^2/(1+y) + y^2/(1+z) + z^2/(1+x) >= 3/2.?
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{1+y+1+z+1+x}=\frac{(x+y+z)^2}{(x+y+z)+3}\)
Áp dụng BĐT Cauchy:
\(x+y+z\geq 3\sqrt[3]{xyz}=3\)
Do đó:
\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{(x+y+z)+3}\geq \frac{(x+y+z)^2}{(x+y+z)+(x+y+z)}=\frac{x+y+z}{2}\geq \frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
P/s: Bạn chú ý lần sau gõ tiêu đề bằng công thức toán !!!
với x,y,z>0 thỏa mãn xyz=1.CMR \(\dfrac{x^3}{2y+1}+\dfrac{y^3}{2z+1}+\dfrac{z^3}{2x+1}\ge1\)
\(\dfrac{x^3}{2y+1}+\dfrac{2y+1}{9}+\dfrac{1}{3}\ge3\sqrt[3]{\dfrac{x^3\left(2y+1\right)}{27\left(2y+1\right)}}=x\)
Tương tự: \(\dfrac{y^3}{2z+1}+\dfrac{2z+1}{9}+\dfrac{1}{3}\ge y\) ; \(\dfrac{z^3}{2x+1}+\dfrac{2x+1}{9}+\dfrac{1}{3}\ge z\)
Cộng vế:
\(VT+\dfrac{2\left(x+y+z\right)+3}{9}+1\ge x+y+z\)
\(\Rightarrow VT\ge\dfrac{7}{9}\left(x+y+z\right)-\dfrac{4}{3}\ge\dfrac{7}{9}.3\sqrt[3]{xyz}-\dfrac{4}{3}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)