Tìm GTNN của biểu thức sau: 5x2 - 6x + 9
Tìm GTNN của các đa thức sau:
A=5x2-|6x-1|-1
B=9x2-6x-4|3x-1|+6
C=2(x+1)2+3(x+2)2-4(x+3)2
Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)
\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)
Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)
\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
\(C=2x^2+4x+2+3x^2+12x+12-4x^2-24x-36\\ C=x^2-8x-22=\left(x^2-8x+16\right)-38=\left(x-4\right)^2-38\ge-38\\ C_{min}=-38\Leftrightarrow x=4\)
Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)
\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)
Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)
\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)
tìm GTNN của biểu thức A=5x2+2y2-4xy-8x-4y+19
A=5x2+2y2−4xy−8x−4y+19=(2x2−4xy+2y2)+4(x−y)+(3x2−12x)+19=2(x−y)2+4(x−y)+3(x2−4x+4)+7=2[(x−y)2+2(x−y)+1]+3(x−2)2+5=2(x−y+1)2+3(x−2)2+5≥0Dấu "=" xảy ra khi{x−y+1
Đúng 0
Bình luận (0)
Khách vãng lai đã xóa
mik viết 5x2 là 5x mũ 2 nha
tìm GTNN của biểu thức A= 2x2-8x+1
Tìm GTLN của B = -5x2-4x+1
cảm ơn nha^^
a: Ta có: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=2
Bài 1: Chứng minh các biểu thức sau luôn dương với mọi x:
a) 9x2 - 6x + 11
b) 3x2 - 12x + 81
c) 5x2 - 5x + 4
d) 2x2 - 2x + 9
a) \(9x^2-6x+11=\left(3x\right)^2-2.3x+1+10=\left(3x-1\right)^2+10>0\forall x\)
b) \(3x^2-12x+81=3.\left(x^2-4x+9\right)=3.\left(x-2\right)^2+15>0\forall x\)
c) \(5x^2-5x+4=5.\left(x^2-x+\dfrac{4}{5}\right)=5.\left(x^2-x+\dfrac{1}{4}+\dfrac{11}{20}\right)=5.\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall x\)
d) \(2x^2-2x+9=2.\left(x^2-x+\dfrac{9}{2}\right)=2.\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}>0\forall x\)
a) = (3x-1)^2+10
Do (3x-1)^2>=0 với mọi x
--> (3x-1)^2+10>0 với mọi x
a) \(9x^2-6x+11=\left(3x-1\right)^2+10\ge10>0\)
b) \(3x^2-12x+81=3\left(x-2\right)^2+69\ge69>0\)
c) \(5x^2-5x+4=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
d) \(2x^2-2x+9=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}\ge\dfrac{17}{2}>0\)
Tìm GTNN của A=5x2-6x+5 trên x2-2x+1.
`A=(5x^2-6x+5)/(x^2-2x+1)`
Xét `A-4`
`=(5x^2-6x+5-4x^2+8x-4)/(x-1)^2`
`=(x^2+2x+1)/(x-1)62`
`=(x+1)^2/(x-1)^2>=0`
`=>A>=4`
Dấu "=" `<=>x+1=0<=>x=-1`
`A=(5x^2-6x+5)/(x^2-2x+1)`
Xét `A-4`
`=(5x^2-6x+5-4x^2+8x-4)/(x-1)^2`
`=(x^2+2x+1)/(x-1)^2`
`=(x+1)^2/(x-1)^2>=0`
`=>A>=4`
Dấu "=" `<=>x+1=0<=>x=-1`
Tìm GTNN của biểu thức:\(B=\frac{14x^2-8x+9}{3x^2+6x+9}\)
Ta có : \(B=\frac{14x^2-8x+9}{3x^2+6x+9}=\frac{2\left(x^2+2x+3\right)+\left(12x^2-12x+3\right)}{3\left(x^2+2x+3\right)}\)
\(=\frac{12\left(x-\frac{1}{2}\right)^2}{3\left(x^2+2x+3\right)}+\frac{2}{3}\ge\frac{2}{3}\) . Dấu "=" xảy ra khi x = 1/2
Vậy Min B = 2/3 khi x = 1/2
Tìm GTNN của biểu thức sau:
2x2 - 6x
\(A=2x^2-6x\)
\(=\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\frac{3\sqrt{2}}{2}\)+\(\left(\frac{3\sqrt{2}}{2}\right)^2-\left(\frac{3\sqrt{2}}{2}\right)^2\)
\(=\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\)
Vì \(\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2};\forall x\)
Hay \(A\ge\frac{-9}{2};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x\sqrt{2}-\frac{3\sqrt{2}}{2}=0\)
\(\Leftrightarrow x\sqrt{2}=\frac{3\sqrt{2}}{2}\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy MIN \(A=\frac{-9}{2}\Leftrightarrow x=\frac{3}{2}\)
Bài giải
\(2x^2-6x=x\left(2x-6\right)\)
* Với \(2x-6>0\) \(\Rightarrow\text{ }2x>6\) \(\Rightarrow\text{ }x>3\) \(\Rightarrow\text{ }x\left(2x-6\right)>0\)
* Với \(2x-6=0\) \(\Rightarrow2x=6\) \(\Rightarrow\text{ }x=3\) \(\Rightarrow\text{ }x\left(2x-6\right)=0\)
* Với \(2x-6< 0\) \(\Rightarrow\text{ }2x< 6\) \(\Rightarrow\text{ }x< 3\)
Vậy GTNN của biểu thức là giá trị âm \(\Rightarrow\) x là số nguyên âm lớn nhất
* Với x = - 1 \(\Rightarrow\text{ }2x^2-6x=2\left(-1\right)^2-6\left(-1\right)=2\cdot1-\left(-6\right)=2+6=8\)
Vậy \(min\text{ }2x^2-6x=8\)
Tìm GTNN của biểu thức sau : x^2y^2+x^2-xy+6x+2016
\(x^2y^2+x^2-xy+6x+2016\)
\(=\left[\left(xy\right)^2-xy+\frac{1}{4}\right]+\left(x^2+6x+9\right)+2006,75\)
\(=\left(xy-\frac{1}{2}\right)^2+\left(x+3\right)^2+2006,75\ge2006,75\forall x;y\)
Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(xy-\frac{1}{2}\right)^2=0\\\left(x+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}xy-\frac{1}{2}=0\\x=-3\end{cases}\Rightarrow}y=\frac{-1}{6}}\)
Vậy GTNN của bt = 2006,75 tại x=-3 ; y=\(\frac{-1}{6}\)
1) Thu gọn đa thức, sau đó tìm bậc, hệ số cao nhất, hệ số tự do của đa thức: A = x3 + 5x2 – x3 +2x2 + 9 – 6x + 11