Những câu hỏi liên quan
CM
Xem chi tiết
HP
Xem chi tiết
H24
11 tháng 7 2017 lúc 10:13

Cho ab =cd 

Chứng minh ab =7a+5c7b+5d (7b+5d khác 0)

Bình luận (0)
TT
Xem chi tiết
ST
1 tháng 7 2018 lúc 8:42

Đặt a/b=c/d=k => a=bk,c=dk

Ta có: \(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(\frac{7a+5c}{7b+5d}=\frac{7bk+5dk}{7b+5d}=\frac{k\left(7b+5d\right)}{7b+5d}=k\left(2\right)\)

Từ (1) vavf (2) => a/b=7a+5c/7b+5d

Bình luận (0)
TT
1 tháng 7 2018 lúc 16:11

Cảm ơn bn nhìu nha

Bình luận (0)
MT
Xem chi tiết
MV
23 tháng 7 2017 lúc 8:50

\(\dfrac{a}{b}=\dfrac{7a}{7b}\\ \dfrac{c}{d}=\dfrac{5c}{5d}\Rightarrow\dfrac{a}{b}=\dfrac{7a}{7b}=\dfrac{5c}{5d}\Rightarrow\dfrac{7a}{7b}=\dfrac{5c}{5d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{7a}{7b}=\dfrac{5c}{5d}=\dfrac{7a+5c}{7b+5d}\)

\(\dfrac{7a}{7b}=\dfrac{a}{b}\Rightarrow\dfrac{a}{b}=\dfrac{5c}{5d}=\dfrac{7a+5c}{7b+5d}\Leftrightarrow\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\)

Vậy \(\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\left(đpcm\right)\)

Bình luận (0)
MS
23 tháng 7 2017 lúc 8:51

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow5ad=5bc\)

\(\Rightarrow7ab+5ad=7ab+5bc\)

\(\Rightarrow a\left(7b+5d\right)=b\left(7a+5c\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\rightarrowđpcm\)

Bình luận (0)
HA
Xem chi tiết
TM
Xem chi tiết
PT
Xem chi tiết
PH
Xem chi tiết
AH
14 tháng 10 2021 lúc 15:21

Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$

Ta có:
\(\frac{7a-11c}{7b-11d}=\frac{7bt-11dt}{7b-11d}=\frac{t(7b-11d)}{7b-11d}=t(1)\)

\(\frac{7a+11c}{7b+11d}=\frac{7bt+11dt}{7b+11d}=\frac{t(7b+11d)}{7b+11d}=t(2)\)

Từ $(1);(2)\Rightarrow \frac{7a-11c}{7b-11d}=\frac{7a+11c}{7b+11d}$

 

Bình luận (1)
NT
Xem chi tiết
MS
11 tháng 8 2017 lúc 8:00

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)

\(\Rightarrow\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

\(\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016bk-2017b}{2017dk+2018d}=\dfrac{b\left(2016k-2017\right)}{d\left(2017k+2018\right)}\)

\(\dfrac{2016c-2017d}{2017a+2018b}=\dfrac{2016dk-2017d}{2017bk+2018b}=\dfrac{d\left(2016k-2017\right)}{b\left(2017k+2018\right)}\)

\(\Rightarrow\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016c-2017d}{2017a+2018b}\)

\(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7bk^2+5bdk^2}{7bk^2-5bdk^2}=\dfrac{k^2\left(7b+5bd\right)}{k^2\left(7b-5bd\right)}=\dfrac{7b+5bd}{7b-5bd}\)

\(\dfrac{7b^2+5ab}{7b^2-5ab}=\dfrac{7b^2+5kb^2}{7b^2-5kb^2}=\dfrac{b^2\left(7+5k\right)}{b^2\left(7-5k\right)}=\dfrac{7+5k}{7-5k}\)

Hình như sai sai

Bình luận (0)