Những câu hỏi liên quan
AD
Xem chi tiết
H24
23 tháng 3 2023 lúc 22:48

xét ΔABC có AD là đường phân giác 

=>\(\dfrac{AB}{BD}=\dfrac{AC}{DC}hay\dfrac{4}{3}=\dfrac{6}{DC}\)

=>DC=\(\dfrac{6.3}{4}=4,5\left(cm\right)\)

BC=BD+DC

     =3+4,5

BC=7,5cm

Bình luận (0)
H24
Xem chi tiết
NM
Xem chi tiết
NT
6 tháng 2 2023 lúc 21:02

a: AC-BC<AB<AC+BC

=>5<AB<8

mà AB>6

nên AB=7cm

b: AB-AC<BC<AB+AC

=>2<BC<14

mà BC<4

nên BC=3cm

Bình luận (0)
DQ
Xem chi tiết
NT
26 tháng 8 2023 lúc 9:58

Gọi O là tâm đường tròn ngoại tiếp ΔABC

Gọi H là giao của AO với BC

AB=AC

OB=OC

Do đó: AO là trung trực của BC

=>AH là trung trực của BC

=>H là trung điểm của BC

HB=HC=4/2=2cm

Kẻ giao của AO với (O) là D

=>AD là đường kính của (O)

Xét (O) có

ΔABD nội tiếp

ADlà đường kính

Do đó: ΔBAD vuông tại B

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>\(AH^2=6^2-2^2=32\)

=>\(AH=4\sqrt{2}\left(cm\right)\)

Xét ΔBAD vuông tại B có BH là đường cao

nên AB^2=AH*AD

=>\(AD=\dfrac{6^2}{4\sqrt{2}}=\dfrac{9}{\sqrt{2}}\left(cm\right)\)

=>\(R=\dfrac{AD}{2}=\dfrac{9}{2\sqrt{2}}\left(cm\right)\)

Bình luận (0)
NM
Xem chi tiết
NT
24 tháng 2 2022 lúc 22:22

a: BC=10cm

Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó: BD=30/7(cm); CD=40/7(cm)

b: Xét ΔABC có DE//AC

nên DE/AC=BD/BC

=>\(\dfrac{DE}{8}=\dfrac{30}{7}:10=\dfrac{3}{7}\)

=>DE=24/7(cm)

Bình luận (0)
HN
Xem chi tiết
NN
Xem chi tiết
DS
15 tháng 4 2021 lúc 20:56

a.Xét ΔABD và ΔIBD có:

         BAD=BID=90 độ

         BD chung

         ABD=IBD (do BD là phân giác góc ABC)

=>ΔABD=ΔIBD (ch-gn)

b.Ta có: ΔABD=ΔIBD (cm câu a)

=>AB=IB (2 cạnh tương ứng)

=>ΔABI cân tại B

Lại có: BD là đường phân giác góc B

=>BD đồng thời là đường cao

=>BD⊥AI

c.Ta có: ΔABD=ΔIBD (cm câu a)

=>AD=ID (2 cạnh tương ứng)

Xét ΔDAK và ΔDIC có:

      DAK=DIC (=90 độ)

      DA=DI (cmt)

     ADK=IDC (2 góc đối đỉnh)

=>ΔDAK=ΔDIC (g.c.g)

=>DK=DC (2 cạnh tương ứng)

d.Vì ΔABC vuông tại A nên:

  =>BC²=AB²+AC²

<=>BC²=6²+8²

<=>BC²=100

<=>BC=√100=10 (cm)

Ta có: BI+IC=BC

=>IC=BC-BI

Lại có: AB=BI (cm câu b)

=>IC=BC-AB

=>IC=10-6=4 (cm)

Vậy IC=4 cm.

 

Bình luận (1)
NT
15 tháng 4 2021 lúc 21:07

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

Suy ra: BA=BE(hai cạnh tương ứng)

Xét ΔBAE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Bình luận (0)
H24
15 tháng 4 2021 lúc 21:07

a) Xét ∆ABD và ∆EBD:

BD cạnh chung

\(\widehat{BAD}=\widehat{BED}=90^o\)

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

=> ∆ABD=∆EBD (ch.gn)

=> AB=BE (2 cạnh t/ứ)

=> ∆ABE cân tại A

b) Ta có: DC=AC-AD=16-6=10 (cm)

Theo câu a: ∆ABD=∆EBD 

=> AD=ED=6

Áp dụng định lý Py-ta-go vào tam giác EDC vuông tại E, ta có:

\(DC^2=EC^2+DE^2\)

\(\Leftrightarrow10^2=6^2+EC^2\Rightarrow EC^2=10^2-6^2=64=8^2\)

\(\Rightarrow EC=8\left(cm\right)\)

c) Xét ∆ADK và ∆EDC:

AD=ED(cm ở b)

\(\widehat{ADK}=\widehat{EDC}\) (2 góc đối đỉnh)

\(\widehat{DAK}=\widehat{DEC}=90^o\)

=> ∆ADK=∆EDC (g.c.g)

=> AK=EC (2 cạnh t/ứ)

Mà AB=BE (cm ở a)

=> AK+AB=EC+BE

<=> BK=BC

=> ∆BCK cân ở B

Theo câu a: ∆ABE cân ở B 

=> \(\widehat{BAE}=\dfrac{180^o-\widehat{B}}{2}\)

Lại có ∆BKC cân ở B(cmt)

=> \(\widehat{BKC}=\dfrac{180^o-\widehat{B}}{2}\)

=> \(\widehat{BAE}=\widehat{BKC}\)

Mà 2 góc này ở vị trí đồng vị

=> AE//KC

Bình luận (0)
QL
Xem chi tiết
HM
13 tháng 9 2023 lúc 22:25

Xét tam giác \(ABC\) có \(DE//BC\) nên theo định lí Thales ta có:

\(\frac{{AD}}{{BD}} = \frac{{AE}}{{EC}} \Rightarrow \frac{x}{2} = \frac{6}{3}\). Do đó, \(x = \frac{{6.2}}{3} = 4\).

Vậy \(x = 4\).

Bình luận (0)
NT
13 tháng 9 2023 lúc 22:26

Chọn A

Bình luận (0)
NA
Xem chi tiết
KL
23 tháng 8 2023 lúc 10:50

Ta có:

\(AB^2=4^2=16\)

\(AC^2=6^2=36\)

\(BC^2=\left(2\sqrt{13}\right)^2=52\)

\(\Rightarrow AB^2+AC^2=BC^2\left(=52\right)\)

\(\Rightarrow\Delta ABC\) vuông tại A (theo định lý Pytago đảo)

\(\Rightarrow sinB=\dfrac{AC}{BC}\)

\(sinC=\dfrac{AB}{BC}\)

\(\Rightarrow\dfrac{sinB}{sinC}=\dfrac{\dfrac{AC}{BC}}{\dfrac{AB}{BC}}=\dfrac{AC}{AB}\)

\(\Rightarrow AB.sinB=AC.sinC\)

Bình luận (0)