Những câu hỏi liên quan
TT
Xem chi tiết
NT
5 tháng 4 2022 lúc 19:20

Bài 2: 

a: Xét ΔAHB và ΔAHC có 

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

DO đó; ΔAHB=ΔAHC

b: Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

c: BC=10cm nên BH=CH=5cm

=>AC=13cm

Bình luận (1)
CM
Xem chi tiết
DL
10 tháng 1 2021 lúc 18:07

undefined

 

a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC

AH⊥BC ⇒ gócAHB=gócAHC

Xét △ABH và △ACH có:

gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)

⇒ △ABH=△ACH (ch-gn)

b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)

Xét △DAH và △EAH có

gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)

AH là cạnh chung

⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)

⇒ △ADE cân tại A

c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)

△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)

⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị

⇒ DE//BC

Bình luận (0)
HT
Xem chi tiết
PT
9 tháng 2 2021 lúc 9:36

a) Xét tam giác BAH và tam giác CAH, có:

AH: cạnh chung

AB = AC ( tam giác ABC cân tại A )

góc AHB = góc AHC ( = 90 độ )

-> tam giác BAH = tam giác CAH ( ch-cgv )

-> HB = HC ( 2 cạnh tương ứng )

b) Xét tam giác FBH và tam giác ECH, có:

HB = HC ( cmt )

góc D = góc E ( = 90 độ )

góc B = góc C ( tam giác ABC cân tại A )

-> tam giác FBH = tam giác ECH ( ch-gn )

-> HF = HE ( 2 cạnh tương ứng )

-> tam giác HEF là tam giác cân tại H

Bình luận (0)
NT
9 tháng 2 2021 lúc 12:18

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔFHB=ΔEHC(cạnh huyền-góc nhọn)

Suy ra: HF=HE(Hai cạnh tương ứng)

Xét ΔHEF có HF=HE(cmt)

nên ΔHEF cân tại H(Định nghĩa tam giác cân)

Bình luận (0)
PT
Xem chi tiết
NT
Xem chi tiết
YN
18 tháng 3 2022 lúc 0:59

`Answer:`

Sửa đề phần c: Chứng minh KF//BC.

C H B A F K

a. Xét `\triangleAHB` và `\triangleAHC`

`AH` chung

`\hat{AHB}=\hat{AHC}=90^o`

`AB=AC`

`=>\triangleAHB=\triangleAHC(ch-cgv)`

b. Xét `\triangleFAH` và `\triangleKAH`

`AH` chung

`\hat{FAH}=\hat{KAH}`

`\hat{AFH}=\hat{AKH}=90^o`

`=>\triangleFAH=\triangleKAH(ch-gn)`

`=>HK=HF`

c. Theo phần b. `\triangleFAH=\triangleKAH`

`=>AF=AK`

`=>\triangleAFK` cân ở `A`

Ta có: `\triangleAFK` cân ở `A` và `\triangleABC` cân ở `A`

`=>\hat{AFK}=\hat{ABC}` mà hai góc này ở vị trí đồng vị \(\Rightarrow KF//BC\)

Bình luận (0)
 Khách vãng lai đã xóa

hình tự vẽ nhé.

xét: \(\Delta AHB\) VÀ   \(\Delta AHC\) CÓ:

\(\widehat{ABH}=\widehat{ACH}\)(DO TAM GIÁC ABC CÂN TẠI A)

\(AB=AC\)(DO TAM GIÁC ABC CÂN TẠI A)
\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right)\left(1\right)\)

b) TỪ (1)\(\Rightarrow BH=CH\)(2 cạnh tương ứng)

XÉT: \(\Delta KBH\)VÀ    \(\Delta FCH\) CÓ:

\(BH=CH\left(cmt\right)\)

​​\(\widehat{BKH}=\widehat{CFH}=90^0\)

\(\widehat{KBH}=\widehat{FCH}\left(\widehat{B}=\widehat{C}\right)\)

\(\Rightarrow\Delta KBH=\Delta FCH\left(ch-gn\right)\)

\(\Rightarrow HK=HF;BK=FC\)(2 cạnh tương ứng)(đpcm)

c) ta có:  \(AB=AC;;BK=FK\left(cmt\right)\)

\(\Rightarrow AB-BK=AC-FC\)

\(\Rightarrow AK=AF\Rightarrow\Delta AKF\) cân tại A

\(\Rightarrow\widehat{AKF}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)

lại có \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)

TỪ (2)VÀ (3)\(\Rightarrow\widehat{AKF}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)

​mà 2 góc này ở vị trí đồng vị \(\Rightarrow KF\\ BC\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
13 tháng 7 2023 lúc 11:01

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: BH=CH=12/2=6cm

=>AC=căn AH^2+HC^2=10cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

Bình luận (0)
HT
Xem chi tiết
KK
27 tháng 3 2022 lúc 14:33
 

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Chứng minh

a) Xét tam giác AHB và tam giác AHC có:

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Bình luận (0)
KK
27 tháng 3 2022 lúc 14:39

b) có tam giác ABC cân tại A

=> AB=AC

có BC=BH+HC

=> BC=12:2=6(cm)

=> BH=6;HC=6

có tam giác AHC

=> áp dụng định lí pytago có 

=>AH2+HC2=AC2

=>82+62=AC2

=>AC2=102

=>AC=10

Bình luận (0)
BL
Xem chi tiết
NT
21 tháng 3 2021 lúc 21:50

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(Hai cạnh tương ứng)

Bình luận (0)
CN
Xem chi tiết

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(Hai cạnh tương ứng)

Bình luận (0)
H24
23 tháng 5 2021 lúc 21:28

a) Ta có: \(\Delta ABC\) cân tại \(A\)

Mà \(AH\) là đường cao

\(\Rightarrow AH\) đồng thời là đường trung trực.

\(\Rightarrow HB=HC\)

b) Ta có: \(\Delta ABC\) cân tại \(A\)

Mà \(AH\) là đường cao

\(\Rightarrow AH\) đồng thời là tia phân giác của \(\widehat{BAC}\)

 

Bình luận (0)
EY
23 tháng 5 2021 lúc 21:30

a) Xét t/giác ABC cân tại A có

 AH \(\perp\)BC

nên AH là đường cao của t/giác ABC

Do đó AH đồng thời là đường trung tuyến,đường phân giác của t/giác ABC

\(\Rightarrow\)HB=HC(AH là đường trung tuyến của t/giác ABC)

   AH là pg của BAC(AH là đường pg của t/giác ABC)

Bình luận (0)
PT
Xem chi tiết
NT
12 tháng 1 2024 lúc 18:56

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)

Bình luận (0)