Bài 6: Tam giác cân

CM

Cho tam giác ABC cân ở A. Kẻ AH vuông góc BC tại Ha) CM: tam giác ABH= tam giác ACH và góc BAH = góc CAHb) Kẻ HD vuông góc AB; HE vuông góc AC. CM: tam giác ADE là tam giác cân c) CM: DE//BC

DL
10 tháng 1 2021 lúc 18:07

undefined

 

a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC

AH⊥BC ⇒ gócAHB=gócAHC

Xét △ABH và △ACH có:

gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)

⇒ △ABH=△ACH (ch-gn)

b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)

Xét △DAH và △EAH có

gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)

AH là cạnh chung

⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)

⇒ △ADE cân tại A

c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)

△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)

⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị

⇒ DE//BC

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
RN
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết