Những câu hỏi liên quan
MT
Xem chi tiết
H24
Xem chi tiết
NT
14 tháng 8 2021 lúc 14:47

a: Ta có: \(\sqrt{4x^2+4x+3}=8\)

\(\Leftrightarrow4x^2+4x+1+2-64=0\)

\(\Leftrightarrow4x^2+4x-61=0\)

\(\Delta=4^2-4\cdot4\cdot\left(-61\right)=992\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-4\sqrt{62}}{8}=\dfrac{-1-\sqrt{62}}{2}\\x_2=\dfrac{-4+4\sqrt{62}}{8}=\dfrac{-1+\sqrt{62}}{2}\end{matrix}\right.\)

 

Bình luận (1)
PP
Xem chi tiết
NT
24 tháng 12 2021 lúc 21:00

b: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1-x-11=0\\x< =1\end{matrix}\right.\Leftrightarrow x=-2\)

Bình luận (0)
TH
Xem chi tiết
H24
3 tháng 2 2021 lúc 22:07

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

Bình luận (3)
DH
3 tháng 2 2021 lúc 22:47

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

Bình luận (0)
AH
4 tháng 2 2021 lúc 1:17

Bài 1:

ĐKĐB suy ra $x(x+1)+y(y+1)=3x^2+xy-4x+2y+2$

$\Leftrightarrow 2x^2+x(y-5)+(y-y^2+2)=0$

Coi đây là PT bậc 2 ẩn $x$

$\Delta=(y-5)^2-4(y-y^2+2)=(3y-3)^2$Do đó:

$x=\frac{y+1}{2}$ hoặc $x=2-y$. Thay vào một trong 2 phương trình ban đầu ta thu được:

$(x,y)=(\frac{-4}{5}, \frac{-13}{5}); (1,1)$

Bình luận (0)
BB
Xem chi tiết
MI
14 tháng 5 2022 lúc 21:53

Bình luận (0)
TL
14 tháng 5 2022 lúc 22:29

Điều kiện xác định: \(\left\{{}\begin{matrix}5x^2+4x\ge0\\x^2-3x-18\ge0\\x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(5x+4\right)\ge0\\\left(x-6\right)\left(x+3\right)\ge0\\x\ge0\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge0\\x\le\dfrac{-4}{5}\end{matrix}\right.\\\left[{}\begin{matrix}x\ge6\\x\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x\ge6\) (*)

Khi đó phương trình \(\Leftrightarrow\) \(\sqrt{5x^2+4x}=\sqrt{x^2-3x-18}+5\sqrt{x}\)

         \(\Leftrightarrow5x^2+4x=x^2+22x-18+10\sqrt{x\left(x^2-3x-18\right)}\\ \Leftrightarrow4x^2-18x+18=10\sqrt{x\left(x^2-3x-18\right)}\\ \Leftrightarrow5\sqrt{x\left(x-6\right)\left(x+3\right)}=2x^2-9x+9\\ \Leftrightarrow5\sqrt{\left(x^2-6x\right)\left(x+3\right)}=2\left(x^2-6x\right)+3\left(x+3\right)\left(1\right)\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2-6x}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\)

Khi đó pt \(\left(1\right)\) trở thành: \(2a^2+3b^2-5ab=0\\ \Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)

- TH1: \(a=b\Rightarrow x^2-6x=x+3\Leftrightarrow x^2-7x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{7+\sqrt{61}}{2}\left(tm\right)\\\dfrac{7-\sqrt{61}}{2}\left(ktm\right)\end{matrix}\right.\)

-TH2: \(2a=3b\Leftrightarrow4a^2=9b^2\\ \Leftrightarrow4\left(x^2-6x\right)=9\left(x+3\right)\\ \Leftrightarrow4x^2-33x-27=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9\left(tm\right)\\x=\dfrac{-3}{4}\left(ktm\right)\end{matrix}\right.\)

Vậy pt có 2 nghiệm \(x=\dfrac{7+\sqrt{61}}{2};x=9\)

 

Bình luận (0)
TN
Xem chi tiết
DQ
8 tháng 10 2020 lúc 18:47

đk: \(\hept{\begin{cases}x^2-2x+5\ge0\\4x+5\ge0\end{cases}}\Leftrightarrow x\ge\frac{-5}{4}\)

Ta có: \(x^3-2x^2-\sqrt{x^2-2x+5}=2\sqrt{4x+5}-5x-4\)

\(\Leftrightarrow3x^3-6x^2+15x+12-3\sqrt{x^2-2x+5}-6\sqrt{4x+5}=0\)

\(\Leftrightarrow3\left(x+1-\sqrt{x^2-2x+5}\right)+2\sqrt{4x+5}\left(\sqrt{4x+5}-3\right)+3x^3-6x^2+4x-1=0\)

\(\Leftrightarrow\frac{12\left(x-1\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{8\left(x-1\right)\sqrt{4x+5}}{\sqrt{4x+5}+3}+\left(x-1\right)\left(3x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{12}{x+1+\sqrt{x^2-2x+5}}+\frac{8\sqrt{4x+5}}{\sqrt{4x+5}+3}+3x^2-3x+1\right)=0\Leftrightarrow x=1\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
NT
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Bình luận (0)
TL
Xem chi tiết
TA
Xem chi tiết