Tìm x,y (y khác 0)
biết:x+y=x-y=x.y
Top 3 người làm xong đầu tick
Tìm x,y biết:x - 4/y - 3=3/4 với x - y = 5
Trình bày cách làm nhé!!!
Đúng mình tick cho
x-y = 5 => x= 5+y
\(\frac{x-4}{y-3}=\frac{3}{4}\Rightarrow4x-16=3y-9\Leftrightarrow4x-3y=7\)
Thay x= 5+y vào biểu thức ở đề bài: \(4\left(5+y\right)-3y=7\Leftrightarrow20+4y-3y=7\Leftrightarrow y=-13\)
=> x= 5+y = -8
cho 3 số x, y, z khác 0 và x+y+z=0. Tính giá trị biểu thức E=(x/y+1)(y/z+1)(z/x+1)
bạn nào giải xong đầu tiên mình tick đúnh nhé!
Tìm x biết:x/5=y/3 và x^2-y^2=4(x,y>0)
Ai giỏi toán thì giải nhanh bài này giúp mình với. Mình sẽ tick cho nhé.
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
Tìm 2 số x, y biết:
x-y = x .y = x : y (với y 0)
Ta có:
\(xy=x:y\Leftrightarrow xy=x.\dfrac{1}{y}\)
\(\Leftrightarrow xy-x.\dfrac{1}{y}=0\)
\(\Leftrightarrow x\left(y-\dfrac{1}{y}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y-\dfrac{1}{y}=0\end{matrix}\right.\)
TH1: \(x=0\)
\(\Rightarrow x-y=xy=0\Leftrightarrow x=y=0\left(ktm\right)\)
TH2:\(y-\dfrac{1}{y}=0\Leftrightarrow\dfrac{y^2-1}{y}=0\)
\(\Leftrightarrow y^2-1=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Khi \(y=1\) thì \(x-1=x\)(không có \(x\) thoả mãn)
Khi \(y=-1\) thì \(x+1=-x\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)(tm)
Vậy \(x=-\dfrac{1}{2}\) và \(y=-1\)
Tìm x , y thuộc Z biết
a. |x|+|y-1|=0
b.|x-2| +|y+3|=0
c. 3.|x+1|+2.|2-y|=0
giup mk nha ai làm xong đầu 3 like
a. lxl+ly-1l=0
ta thấy lxl\(\ge\)0 với mọi x
ly-1l\(\ge\)với mọi y
=>lxl+ly-1l\(\ge\)0 với mọi x,y
=>lxl+ly-1l=0
\(\Leftrightarrow\)lxl=0 và ly-1l=0 =>x=0; y=1
b. lx-2l+ly+3l=0
ta thấy: lx-2l\(\ge\)0 với mọi x
ly+3l\(\ge\)0 với mọi y
=>lx-2l+ly+3l\(\ge\)0 với mọi x,y
=>lx-2l+ly+3l=0
\(\Leftrightarrow\)lx-2l=0 và ly+3l=0
=>x=2;y=-3
c.3lx+1l+2l2-yl=0
ta thấy lx+1l\(\ge\)0 với mọi x=>3lx+1l\(\ge\)0 với mọi x
l2-yl\(\ge\)0 với mọi y=>2l2-yl\(\ge\)0 với mọi y
=>3lx+1l+2l2-yl\(\ge\)0
=>3lx+1l+2l2-yl=0
\(\Leftrightarrow\)lx+1l=0 và l2-yl=0
=>x=-1;y=2
a. Vì |x| và |y-1| đều > 0
Mà |x| + |y-1| = 0
=> x = y - 1 = 0
=> x = 0; y = 1
b. Tương tự:
\(\left|x-2\right|\ge0;\left|y+3\right|\ge0\)
Mà |x-2| + |y+3| = 0
=> x - 2 = y + 3 = 0
=> x = 2; y = -3
c. Tương tự:
\(3.\left|x+1\right|\ge0;2.\left|2-y\right|\ge0\)
Mà 3.|x+1|+2.|2-y|=0
=> x + 1 = 2 - y = 0
=> x = -1; y = 2
a) x = 0 ; y = 1
b) x = 2 ; y = -3
c) x = -1 ; y = 2
tick nhiệt tình nha
Tìm x,y nguyên biết
a. (x-1).(y+2)= -3
b. |x+5|+ |y-1| = 0
c. (x+1).(y-3) = 5
Mọi người cố giúp mình xong mình tick cho :)) mình cần gấp lắm
Tìm giá trị của đa thức
M=x3+x2y-xy2-y3+x2-y2+2x+2y+3 biết x+y+1=0
Ai làm xong nhanh nhất mình sẽ tick nha! Mình đang vội !!!!!!
\(M=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(M=\left(x^3-y^3\right)+\left(x^2y-xy^2\right)+\left(x^2-y^2\right)+\left(2x+2y+2\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2+xy+x+y\right)+2.0+1\)
\(M=\left(x-y\right)\left[\left(x+y\right)^2+\left(x+y\right)\right]+1\)
\(M=\left(x-y\right)\left(x+y\right)\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x+y\right).0+1\)
\(M=1\)
Ở bài này mk áp dụng hằng đẳng thức (a3-b3)=(a-b)(a2+ab+b2) ,(a2-b2)=(a-b)(a+b);(a2+2ab+b2)=(a+b)2
MIK nghĩ bạn nên tra ông google nha
(^-^)@@@@@@
Tìm x,y biết:
x:3=y:5 và y-x=24
\(x:3=y:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)
=> \(\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)
\(x:3=y:5 \Leftrightarrow \dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12 \\ \Rightarrow x=12.3=36 \\ y=12.5=60\)
Vậy...
Ta có: x:3=y:5
nên \(\dfrac{x}{3}=\dfrac{y}{5}\)
mà y-x=24
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{3}=12\\\dfrac{y}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)
Vậy: (x,y)=(36;60)
tìm x,y biết:
x/-5=y/4=2
x/3=2/y;x,y ∈ Z
a, Xét \(\dfrac{x}{-5}=2\Rightarrow x=-10\)
\(\dfrac{y}{4}=2\Leftrightarrow y=8\)
b, \(xy=6\Rightarrow x;y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |