Những câu hỏi liên quan
NA
Xem chi tiết
NL
30 tháng 7 2021 lúc 22:51

1. \(y'=3x^2\sqrt{x}+\dfrac{x^3-5}{2\sqrt{x}}=\dfrac{7x^3-5}{2\sqrt{x}}\)

2. \(y'=3x^5+\dfrac{3}{x^2}+\dfrac{1}{\sqrt{x}}\)

3. \(y'=2-\dfrac{2}{\left(x-2\right)^2}\)

Bình luận (0)
H24
Xem chi tiết
HH
14 tháng 5 2022 lúc 19:06

đề bài thiếu, ko giải được, cái nghiệm -1 có thể của f(u) hoặc của u' 

Bình luận (1)
JE
Xem chi tiết
NL
27 tháng 3 2021 lúc 0:01

Hình như là đề sai, hàm số ko có tham số m nào

Bình luận (0)
LN
Xem chi tiết
PL
Xem chi tiết
HH
18 tháng 4 2021 lúc 20:40

1/ \(=\lim\limits_{x\rightarrow-\infty}x\left(-\sqrt{\dfrac{16x^2}{x^2}-\dfrac{3x}{x^2}+\dfrac{5}{x^2}}+2-\dfrac{5}{x}\right)=\lim\limits_{x\rightarrow-\infty}x\left(-4+2\right)=-\infty\)

\(=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{\dfrac{16x^2}{x^2}-\dfrac{3x}{x^2}+\dfrac{5}{x^2}}+2-\dfrac{5}{x}\right)=\lim\limits_{x\rightarrow+\infty}x\left(4+2\right)=+\infty\)

2/ \(S=\dfrac{-\dfrac{1}{3}}{1+\dfrac{1}{3}}=-\dfrac{1}{4}\)

4/ undefined

5/ undefined

Bình luận (0)
HH
18 tháng 4 2021 lúc 20:48

\(f'\left(x\right)=4\left(2m-1\right)x^3-4x\)

Vì tiếp tuyến vuông góc với \(y=5x-2018\Rightarrow f'\left(x\right)=-\dfrac{1}{5}\)

\(\Rightarrow f'\left(1\right)=-\dfrac{1}{5}\Leftrightarrow4\left(2m-1\right)-4=-\dfrac{1}{5}\Leftrightarrow m=\dfrac{39}{40}\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 9 2023 lúc 19:47

1) \(f\left(x\right)=2x-5\)

\(f'\left(x\right)=2\)

\(\Rightarrow f'\left(4\right)=2\)

2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)

\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)

Bình luận (0)
NT
15 tháng 9 2023 lúc 19:42

loading...  loading...  

Bình luận (0)
KR
Xem chi tiết
HP
22 tháng 3 2021 lúc 6:13

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

Bình luận (0)
NT
Xem chi tiết
HH
24 tháng 7 2023 lúc 19:16

\(y'=\dfrac{x-m-x+1}{\left(x-m\right)^2}=\dfrac{1-m}{\left(x-m\right)^2}\)

Hàm số nghịch biến trên khoảng \(\left(-\infty;2\right)\Leftrightarrow y'< 0\forall x\in\left(-\infty;2\right)\Leftrightarrow\left\{{}\begin{matrix}1-m< 0\\x\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge2\end{matrix}\right.\Rightarrow m\ge2\)

Có 19-2+1=18 giá trị nguyên của m thỏa mãn

Bình luận (0)
H24
Xem chi tiết
NL
8 tháng 1 2024 lúc 20:55

Hàm số xác định trên R khi và chỉ khi:

\(sin^2x+\left(2m-3\right)cosx+3m-2>0;\forall x\in R\)

\(\Leftrightarrow-cos^2x+\left(2m-3\right)cosx+3m-1>0\)

\(\Leftrightarrow t^2-\left(2m-3\right)t-3m+1< 0;\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow t^2+3t+1< m\left(2t+3\right)\)

\(\Leftrightarrow\dfrac{t^2+3t+1}{2t+3}< m\) (do \(2t+3>0;\forall t\in\left[-1;1\right]\))

\(\Leftrightarrow m>\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}\)

Ta có: \(\dfrac{t^2+3t+1}{2t+3}=\dfrac{t^2+t-2+2t+3}{2t+3}=\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}+1\)

Do \(-1\le t\le1\Rightarrow\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}\le0\)

\(\Rightarrow\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}=1\)

\(\Rightarrow m>1\)

Bình luận (1)