Rút gọn :
C= \(\sqrt{25x^2}+3x\) với x<0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho biểu thức A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) (với \(x\ge0;x\ne9\))
a) Rút gọn A
b) Tìm x nguyên để A nguyên
a, \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
b, \(A\in Z\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\in Z\)
\(\Leftrightarrow\sqrt{x}+3\inƯ_3=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\)
\(a,A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\left(x\ge0;x\ne9\right)\\ A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ A=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
\(b,A\in Z\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\in Z\Leftrightarrow-3⋮\sqrt{x}+3\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-6;-4;-2;0\right\}\)
Mà \(\sqrt{x}\ge0\)
\(\Leftrightarrow x\in\left\{0\right\}\)
Vậy \(x=0\) thì A nguyên
rút gọn P
P = \(\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+2\sqrt{x}-1}\)
P=\(\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+2\sqrt{x}-1}\)(đk :\(x\ge0,x\ne\frac{1}{9},x\ne1\))
=\(\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+3\sqrt{x}-\sqrt{x}-1}=\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\)(1)
TH1 : \(0\le\sqrt{x}\le1\)
Từ (1)=> \(P=\frac{2\sqrt{x}+1-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}=\frac{1}{3\sqrt{x}-1}\)
TH2: x>1
Từ (1) => \(P=\frac{2\sqrt{x}+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}+1}\)
Vậy với \(0\le x\le1\) => \(P=\frac{1}{3\sqrt{x}-1}\)
x>1=> P=\(\frac{1}{\sqrt{x}+1}\)
\(P=\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+2\sqrt{x}-1}\)
ĐK: \(x\ge0;x\ne\frac{1}{9}\)
\(TH_1:\sqrt{x}-1\ge0\Leftrightarrow x\ge1\)
\(P=\frac{2\sqrt{x}+\sqrt{x}-1}{3x+2\sqrt{x}-1}\\ =\frac{3\sqrt{x}-1}{3x+3\sqrt{x}-\sqrt{x}-1}\\ =\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}\\ =\frac{1}{1+\sqrt{x}}=\frac{1-\sqrt{x}}{1-x}\)
\(TH_2:\sqrt{x}-1< 0\Leftrightarrow x< 1\)
\(P=\frac{2\sqrt{x}+1-\sqrt{x}}{3x+2\sqrt{x}-1}\\ =\frac{\sqrt{x}+1}{3x+3\sqrt{x}-\sqrt{x}-1}\\ =\frac{\sqrt{x}+1}{\left(3\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}\\ =\frac{1}{3\sqrt{x}-1}\\ =\frac{3\sqrt{x}+1}{9x-1}\)
Rút gọn biểu thức:
\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}\) với x ≥ 0 và x ≠ 1;-1
\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}\\ =\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{x+1}=\dfrac{2}{x-1}\cdot\dfrac{x-1}{x+1}\\ =\dfrac{2}{x+1}\)
\(\bigg(\dfrac{1}{\sqrt x-1}-\dfrac{1}{\sqrt x+1}\bigg):\dfrac{x+1}{x-1}\\=\bigg(\dfrac{\sqrt x+1}{(\sqrt x-1)(\sqrt x+1)}-\dfrac{\sqrt x-1}{(\sqrt x-1)(\sqrt x+1)}\bigg.\dfrac{x-1}{x+1}\\=\dfrac{\sqrt x+1-\sqrt x+1}{(\sqrt x-1)(\sqrt x+1)}.\dfrac{(\sqrt x-1)(\sqrt x+1)}{x+1}\\=\dfrac{2}{x+1}\)
Cho biểu thức A=\(\dfrac{1}{x-1}\)+\(\dfrac{3x^2}{1-x^3}\)+\(\dfrac{2x}{x^2+x+1}\)với x≠1
a) Rút gọn biểu thức A
b)Chứng minh với mọi x≠1 thì biểu thức A luôn nhận giá trị âm
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm
Cho BT: P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)×\dfrac{x-4}{\sqrt{4-x}}\) với x > 0, x ≠ 4 a) Rút gọn P b) Tìm x để P > 3
Sửa đề: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\cdot\dfrac{x-4}{4-\sqrt{x}}\)
a: \(P=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\cdot\dfrac{x-4}{4-\sqrt{x}}=\dfrac{2x}{4-\sqrt{x}}\)
b: Để P>3 thì P-3>0
\(\Leftrightarrow-\dfrac{2x}{\sqrt{x}-4}-3>0\)
\(\Leftrightarrow\dfrac{-2x-3\sqrt{x}+12}{\sqrt{x}-4}>0\)
\(\Leftrightarrow\dfrac{5\sqrt{x}-12}{\sqrt{x}-4}< 0\)
=>12/5<căn x<4
=>144/25<x<16
Rút gọn \(\frac{x^{\text{4}}-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
Ai giúp mình với mình cảm ơn
\(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(=\frac{x^3\left(x-1\right)-\left(x-1\right)}{x^4+x^3+x^2+2x^2+2x+2}\)
\(=\frac{\left(x-1\right)\left(x^3-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}\)
\(=\frac{\left(x-1\right)^2}{\left(x^2+2\right)}\)
Rút gọn biểu thức:
\(A=\dfrac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\)với \(-2\le x\le2\)
\(A=\dfrac{\sqrt{2+\sqrt{4-x^2}}\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
\(\Rightarrow A=\sqrt{\left(2+x\right)^{^{ }3}}-\sqrt{\left(2-x\right)^3}=\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)\)
\(\Rightarrow A=\dfrac{\sqrt{4+2\sqrt{4-x^2}}\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)}{\sqrt{2}\left(4+\sqrt{4-x^2}\right)}\)
\(\Rightarrow A=\dfrac{\left(\sqrt{2+x}+\sqrt{2-x}\right)\left(\sqrt{2+x}-\sqrt{2-x}\right)}{\sqrt{2}}=2\sqrt{2}\)
Rút gọn biểu thức:
\(A=\dfrac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\)với \(-2\le x\le2\)
Rút gọn :
D = \(\frac{3\sqrt{1-4x+4x^2}}{2x-1}\) với x>\(\frac{1}{2}\)
\(D=\frac{3\sqrt{1-4x+4x^2}}{2x-1}=\frac{3\sqrt{\left(2x\right)^2-2.2x.1+1^2}}{2x-1}=\frac{3\sqrt{\left(2x-1\right)^2}}{2x-1}=\frac{3.\left(2x-1\right)}{2x-1}=3\)
mình làm lại nè, bài kia mình hơi nhầm 1 chút
\(=\frac{3\left(2x-1\right)}{2x-1}=3\)
p/s tới 1 người
hôm nay onl nhưng ko chat đc,,,pp nha nn