Bài 1: Căn bậc hai

DT

rút gọn P

P = \(\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+2\sqrt{x}-1}\)

LH
24 tháng 8 2019 lúc 21:50

P=\(\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+2\sqrt{x}-1}\)(đk :\(x\ge0,x\ne\frac{1}{9},x\ne1\))

=\(\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+3\sqrt{x}-\sqrt{x}-1}=\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\)(1)

TH1 : \(0\le\sqrt{x}\le1\)

Từ (1)=> \(P=\frac{2\sqrt{x}+1-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}=\frac{1}{3\sqrt{x}-1}\)

TH2: x>1

Từ (1) => \(P=\frac{2\sqrt{x}+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}+1}\)

Vậy với \(0\le x\le1\) => \(P=\frac{1}{3\sqrt{x}-1}\)

x>1=> P=\(\frac{1}{\sqrt{x}+1}\)

Bình luận (3)
KH
24 tháng 8 2019 lúc 22:13

\(P=\frac{2\sqrt{x}+\left|\sqrt{x}-1\right|}{3x+2\sqrt{x}-1}\)

ĐK: \(x\ge0;x\ne\frac{1}{9}\)

\(TH_1:\sqrt{x}-1\ge0\Leftrightarrow x\ge1\)

\(P=\frac{2\sqrt{x}+\sqrt{x}-1}{3x+2\sqrt{x}-1}\\ =\frac{3\sqrt{x}-1}{3x+3\sqrt{x}-\sqrt{x}-1}\\ =\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}\\ =\frac{1}{1+\sqrt{x}}=\frac{1-\sqrt{x}}{1-x}\)

\(TH_2:\sqrt{x}-1< 0\Leftrightarrow x< 1\)

\(P=\frac{2\sqrt{x}+1-\sqrt{x}}{3x+2\sqrt{x}-1}\\ =\frac{\sqrt{x}+1}{3x+3\sqrt{x}-\sqrt{x}-1}\\ =\frac{\sqrt{x}+1}{\left(3\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}\\ =\frac{1}{3\sqrt{x}-1}\\ =\frac{3\sqrt{x}+1}{9x-1}\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
VD
Xem chi tiết
HA
Xem chi tiết
NU
Xem chi tiết
NS
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
IB
Xem chi tiết
NN
Xem chi tiết