chứng minh (x-x^2+1)/(x-x^2-1)<1
các bạn giải nhanh dùm mình nhé mình đang cần gấp, cảm ơn mấy bạn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Mọi người giúp em làm bài này với, em đang cần gấp. Cảm ơn
Câu 2: Chứng minh x^3k+1 + x^2 + 1 chia hết cho x^2+x+ I.
Câu 3: Chứng minh x^3k+2 + x + 1 chia hết cho x^2 + x + 1.
Câu 4: Chứng minh x^6 − 1 chia hết cho x^4 +x2 + 1.
Chứng minh đẳng thức: (x-x^1).(x-x^2)=x^2-(x^1+x^2)x+x^1.x^2
lm ơn trả lời giùm mk đi mấy bn
Chứng minh: (x^2+x+1)^2+(x-1)^2-2(x^2+x+1)(x-1)
(x^2+x+1)^2+(x-1)^2-2(x^2+x+1)(x-1)
=(x^2+x+1)^2-2(x^2+x+1)(x-1)+(x-1)^2
=[(x^2+x+1)-(x-1)]^2
=(x^2+2)^2.
Chứng minh bdt x-x^2 +1/x-x^2-1 <1
Ta có: (x-x2+1)/(x-x2-1) - 1
= (x-x2+1)/(x-x2-1) - (x-x2-1)/(x-x2-1)
= (x-x2+1-x+x2+1)/(x-x2-1) = 2/(x-x2-1) = -2/(x2-x+1)
Ta có: x2-x+1 = x2-x+1/4+3/4 = (x - 1/2)2 + 3/4 > 0 với mọi x
Nên (x-x2+1)/(x-x2-1) < 1 (đpcm)
Chứng minh rằng : 1/x+1-1/x+2=1/(x+1)(x+2)
`1/(x+1)-1/(x+2)`
`=(x+2-x-1)/((x+1)(x+2))`
`=1/((x+1)(x+2))(ĐPCM)`
\(\dfrac{1}{x+1}-\dfrac{1}{x+2}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\left(đpcm\right)\)
Ta có: \(\dfrac{1}{x+1}-\dfrac{1}{x+2}\)
\(=\dfrac{x+2}{\left(x+1\right)\left(x+2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)(đpcm)
chứng minh đẳng thức
(x^3 -1) (x^3+1) = (x^2-1) (x^2+x+1) (x^2 x +1)
Bạn ơi đề bài sai nha mik sửa lại đề bài
\(\left(x^3-1\right)\left(x^3+1\right)=\left(x^2-1\right)\left(x^2+x+1\right)\)
VT = \(\left(x^3-1\right)\left(x^3+1\right)=\left(x^3\right)^2-1=x^6-1\)
VP = \(\left(x^2-1\right)\left(x^2+x+1\right)=\left(x^2\right)^3-1=x^6-1\)
Ta thấy VT = VP
=> \(\left(x^3-1\right)\left(x^3+1\right)=\left(x^2-1\right)\left(x^2+x+1\right)\) (đpcm)
bài 1:
chứng minh :(a+b)2-(a-b)2=4ab
rút gọn :(a+2)2_(a+2).(a-2)
tìm x: (2x+3)2-4(x-1).(x+1)=49
tính giá trị biểu thức :
Q=(x+3)2+(x+3).(x-3)-2.(x+2).(x-4), cho x=1/2
bài 2
rút gọn biểu thức
A=(4x2+y2).(2x+y).(2x-y)
chứng minh :(7x+1)2-(x+7)2+48(x2-1)
tìm x, biết : 16x2-(4x-5)2=15
tìm giá trị nhỏ nhất : A-x2+2x+3
Em đang cần gấp! giúp với ạ
a)chứng minh rằng : với mọi số tự nhiên n : (x+1)^4n+2 +(x-1)^4n+2 chia hết cho x^2 +1
b) chứng minh rằng với mọi số tự nhiên n : ( x^n -1) ( x^n+1 -1) chia hết cho (x+1)(x-1)