Những câu hỏi liên quan
HV
Xem chi tiết
VH
23 tháng 7 2023 lúc 22:00

a) \(\left\{{}\begin{matrix}a=x\\b=2y\\c=3z\end{matrix}\right.\Rightarrow a+b+c=2;a,b,c>0\)

\(\Rightarrow S=\sqrt{\dfrac{\dfrac{ab}{2}}{\dfrac{ab}{2}+c}}+\sqrt{\dfrac{\dfrac{bc}{2}}{\dfrac{bc}{2}+a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

Vì a,b,c>0 nên áp dụng BĐT AM-GM, ta có: 

 \(\sqrt{\dfrac{ab}{ab+2c}}=\sqrt{\dfrac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\dfrac{ab}{c^2+bc+ca+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{a}{a+c}}.\sqrt{\dfrac{b}{b+c}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\) 

\(\sqrt{\dfrac{bc}{bc+2a}}=\sqrt{\dfrac{bc}{\left(b+a\right)\left(c+a\right)}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\)

\(\sqrt{\dfrac{ca}{ca+2b}}=\sqrt{\dfrac{ca}{\left(c+b\right)\left(a+b\right)}}\le\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)\)

\(\Rightarrow S\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi: a=b=c=2/3=>\(\left(x,y,z\right)=\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{2}{9}\right\}\)

Bình luận (0)
VN
Xem chi tiết
NL
5 tháng 8 2021 lúc 15:49

Đặt \(\left(x;2y;3z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2\)

\(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(S=\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}+\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}+\sqrt{\dfrac{ca}{ca+b\left(a+b+c\right)}}\)

\(S=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(S\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\Rightarrow x;y;z\)

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 10 2021 lúc 21:01

\(\left(x+y+z\right)^3-3xy-3yz-3xz\)

\(=x^3+y^3+z^3+3xyz\left(xy+yz+xz\right)-3\left(xy+yz+xz\right)\)

\(=x^3+y^3+z^3+3\left(xy+yz+xz\right)\left(xyz-1\right)\)

Bình luận (0)
CH
Xem chi tiết
LG
Xem chi tiết
SN
Xem chi tiết
LN
3 tháng 1 2021 lúc 22:20

Không có mô tả.

Không có mô tả.

Bình luận (1)
H24
Xem chi tiết
AH
30 tháng 8 2019 lúc 19:43

Lời giải:

Đặt $(x,2y,3z)=(a,b,c)$. Khi đó bài toán trở thành:

Cho $a,b,c>0$ thỏa mãn $a+b+c=2$. Tìm GTLN của:

\(S=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ca}{ac+2b}}\)

------------------------------------

Từ $a+b+c=2$ ta có:

\(S=\sqrt{\frac{ab}{ab+(a+b+c)c}}+\sqrt{\frac{bc}{bc+(a+b+c)a}}+\sqrt{\frac{ca}{ac+(a+b+c)b}}\)

\(=\sqrt{\frac{ab}{(c+a)(c+b)}}+\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ca}{(b+c)(b+a)}}\)

Áp dụng BĐT Cauchy:

\(\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{(b+a)(b+c)}}\leq \frac{1}{2}\left(\frac{a}{b+a}+\frac{c}{b+c}\right)\)

Cộng theo vế:

\(S\leq \frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{3}{2}\)

Vậy $S_{\max}=\frac{3}{2}$. Dấu "=" xảy ra khi $a=b=c$

hay $x=\frac{2}{3}; y=\frac{1}{3}; z=\frac{2}{9}$

Bình luận (3)
DN
Xem chi tiết
H24
10 tháng 6 2019 lúc 8:37

Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c>0\right)\Rightarrow a+b+c=2\)

Khi đó \(S=\Sigma\sqrt{\frac{\frac{ab}{2}}{\frac{ab}{2}+c}}=\Sigma\sqrt{\frac{ab}{ab+2c}}=\Sigma\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}\)

                                                  \(=\Sigma\sqrt{\frac{ab}{ab+bc+ca+c^2}}=\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

Áp dụng bđt Cô-si có

\(S\le\frac{\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)}{2}=\frac{3}{2}\)

Bình luận (0)
DN
10 tháng 6 2019 lúc 8:49

thank đay là đề thi chuyên toán 

Bình luận (0)
NH
10 tháng 6 2019 lúc 8:51

Anh ơi năm nay e lên lớp 9 và cũng bắt đầu làm quen với dạng bất đẳng thức , a cho em hỏi mấy cái chữ M nằm ngang là gì thế ạ ? mong anh giải đáp giúp e

Bình luận (0)
TA
Xem chi tiết